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ABSTRACT 

The shift from wired to fully wireless communication is causing an increasing demand on 

the frequency spectrum. The cognitive radio was introduced to solve spectrum scarcity by 

allowing spectrum sharing between licensed and unlicensed users. This approach presents 

a challenge to source localization because of the cognitive radio’s capability to shift its 

spatial, frequency and temporal parameters. The extended semi-range-based (ESRB) and 

cooperative-received-signal-strength-based (CRSSB) localization schemes are proposed 

to overcome the challenge of identifying and locating a cognitive radio over time using a 

wireless sensor network. The objective of this thesis was to set up a testbed using GNU 

Radio and Universal Software Radio Peripherals (USRPs) to estimate the position of a 

cognitive radio device using the ESRB and CRSSB localization schemes. The ESRB 

algorithm does not provide accurate position estimates but the estimates are observed to 

be concentrated in the vicinity and converging toward the true position of the secondary 

user. The errors are believed to be caused by three factors: a limited number of sensor 

nodes used (four), an insufficient number of spectral scans per superframe (55), and the 

lack of synchronization among sensor nodes. The CRSSB localization scheme gave a 

more accurate position estimation. 
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EXECUTIVE SUMMARY 

Communication is shifting from wired to a fully wireless technology, causing an 

increasing demand for radio frequency spectrum leading to a shortage in available 

frequency bands. Nevertheless, by observing the radio spectrum over time, it can be seen 

that some radio frequency bands are heavily used, especially the unlicensed bands, 

whereas some licensed bands are underutilized and only partially occupied. 

Cognitive radio was introduced as a solution to improve spectrum utilization by 

allowing spectrum sharing between licensed and unlicensed users. The cognitive radio is 

an intelligent device with the capability of detecting the surrounding spectrum occupancy 

and selecting the suitable parameters (e.g., frequency and modulation) to 

opportunistically access the spectrum without affecting the quality of the licensed user’s 

communication. 

Due to the high demand of wireless devices and the shortage of the frequency 

spectrum, both the U.S. Department of Defense (DOD) and the Tunisian Ministry of 

Defense (TMoD) are moving toward a heavy use of cognitive radio technologies in their 

wireless communication. It is challenging for any military application to locate deployed 

cognitive radios in the area of operation for two reasons. First, any localization scheme 

must be able to adapt along with the cognitive radio as it changes. Second, the scheme 

requires keeping track of the cognitive radio’s frequency occupancy to distinguish 

between licensed users and cognitive radios. 

Angle-of-arrival and received-signal-strength-based localization are two 

localization algorithms that are commonly used in a cognitive environment. The accuracy 

of these schemes requires a precise channel model and a priori knowledge of the 

transmission conditions (e.g., signal-to-noise ratio and path loss factor). The cooperative-

received-signal-strength-based localization scheme (CRSSB) is capable of solving for the 

position of a secondary user in cognitive environment using a wireless sensor network 

without the prior knowledge of transmission conditions.  
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An extended semi-range-based (ESRB) location scheme is another scheme that 

has been proposed to overcome the challenge of identifying and tracking the position of a 

cognitive radio over time. The scheme’s underlying principle is the monitoring of the 

environment’s temporal parameters (i.e., position and frequency occupancy) in a 

collaborative manner to determine the cognitive radio’s position.  

The objective of this thesis was to implement a real-world software-defined radio 

environment experiment in which the position of a cognitive radio device was estimated 

using the ESRB and CRSSB localization schemes. The network elements were designed 

based upon the software-defined radio approach, using a GNU Radio interfaced with 

Ettus Research’s Universal Software Radio Peripheral (USRP) devices. Three GNU 

Radio routines were developed to meet the design requirements of the sensor node, the 

primary user, and the secondary user. Two available devices from Ettus Research were 

used: the USRP N210 with WBX daughterboard for sensor nodes and the secondary user 

(cognitive radio device) and the USRP B200 for primary users.  

The cognitive environment experimental testbed was set up on the roof of 

Spanagel Hall at the Naval Postgraduate School. Each of the networked elements worked 

successfully and provided the desired output. First, the primary user generated a signal 

with fixed amplitude at the preselected channel. Second, all sensor nodes were able to 

perform the energy detection process of the primary user signal. Finally, the secondary 

user was able to sense the spectrum and transmit a burst in the detected vacant slots.  

As a final step, the scan reports from each sensor node were aggregated at the 

decision maker in which the ESRB and the CRSSB localization algorithms were executed 

to estimate the secondary user location. For the ESRB localization scheme, the results 

were not accurate, but the estimates are observed to be concentrated in the vicinity and 

converging toward the true position of the secondary user. The position errors are 

believed to be caused by three factors: a limited number of the sensor nodes used (four 

sensor nodes), a number of spectral scans per superframe (55 scans) which were fewer 

than the suggested number to obtain close estimates (600 scans), and a lack of timing 

synchronization among sensor nodes. The CRSSB localization scheme provided position 

estimation within an acceptable level of tolerance. 
 xvi 
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I. INTRODUCTION 

Currently, communication is switching from wired to a fully wireless technology. 

Moreover, the demand for wireless applications is expanding, causing an increasing 

demand for radio frequency spectrum [1], [2], [3]. To establish a beneficial use of the 

radio spectrum, the Federal Communication Commission (FCC) in the United States and 

similar governmental agencies in other countries, are regulating frequency spectrum 

access between users by assigning frequency bands to specific users (licensed users) in a 

specific location.  

The FCC is facing the challenge of finding free frequency slots for new services 

which is considered the hardest problem to solve because of spectrum scarcity. 

Nevertheless, by observing the radio spectrum over time, it can be seen that some radio 

frequency bands are heavily used, especially the unlicensed bands, whereas some 

licensed bands are underutilized and only partially occupied [2], [4], [5]. 

Cognitive radio was introduced as a solution to improve spectrum utilization by 

allowing spectrum sharing between licensed and unlicensed users. A cognitive radio is an 

intelligent device with the capability of being aware of the radio frequency occupancy 

and selecting the suitable parameters (e.g., frequency and modulation) to 

opportunistically access the spectrum without affecting the licensed user’s 

communication quality [1], [2], [6], [7], [8]. 

Both the U.S. Department of Defense (DOD) and the Tunisian Ministry of 

Defense (TMoD) are moving toward a heavy use of cognitive radio technologies in their 

wireless communication due to high demand on wireless devices and the shortage of 

frequency spectrum. It is always important for any military application to be aware of the 

location of any deployed wireless device in the area of operation, which is challenging 

when considering these cognitive radio devices for two reasons. First, any localization 

scheme must be able to adapt along with the cognitive radio as it changes. Second, the 

scheme requires keeping track of the cognitive radio’s frequency occupancy to 

distinguish between licensed users and cognitive radios [1], [2]. 
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Angle-of-arrival and received-signal-strength-based-localization are two 

localization algorithms that are commonly used in cognitive environments. The accuracy 

of these schemes requires a precise channel model and a priori knowledge of the 

transmission conditions such as signal-to-noise ratio and path loss factor [9]. The 

cooperative-received-signal-strength-based localization scheme (CRSSB) was proposed 

in [9] to determine if it is possible to solve for the position of the secondary user in a 

cognitive environment using a wireless sensor network.  

An extended semi-range-based (ESRB) location scheme is proposed in [1], [2] to 

overcome the challenge of identifying and tracking the position of a cognitive radio over 

time. The scheme’s underlying principle is the monitoring of the environment’s temporal 

parameters (i.e., position and frequency occupancy) in a collaborative manner to 

determine the cognitive radio’s position [1], [2]. In order to test the feasibility and the 

efficacy of both schemes (ESRB and CRSSB localization) in real word conditions and to 

demonstrate that a wireless sensor network can be used to locate a cognitive radio over 

time, a scenario is implemented using software defined radios in this work. 

A. THESIS OBJECTIVE 

The objective of this thesis is to implement a real-world testing environment in 

which the position of a cognitive radio device is estimated using the ESRB and CRSSB 

localization schemes. To take advantage of software defined radio features (mainly 

flexibility and adaptability), the software defined radio design framework, GNU Radio, 

interfaced with Ettus products (Universal Software Radio Peripheral (USRP)) was used 

in this work. Three GNU Radio routines were developed to meet the design requirements 

of a sensor node, a primary user, and a secondary user. Two available devices from a list 

of Ettus products were used: 1) the USRP N210 with WBX daughterboard for sensor 

nodes and the secondary user (cognitive radio device) and 2) the USRP B200 for primary 

users. The goal is to develop an overall cognitive environment testbed and conduct an 

experiment to locate a secondary user by using measurements from the sensor nodes and 

using the primary users as points of reference. The ESRB and the CRSSB algorithms are 

used for position estimation. 
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B. RELATED WORK 

Cognitive radio is the future of wireless communication; therefore, several 

technologies are being adopted and standardized, such as the Institute of Electrical and 

Electronics Engineers (IEEE) standards, 802.22 [10], [6], [11] and the 802.11af [11]. 

A software defined radio design approach helps promote the development of 

wireless communication systems based on cognitive radio features because of the 

capability of software defined radios to dynamically change their features and to 

reconfigure themselves to accommodate network requirements [12]. Consequently, a 

large number of research projects are being conducted to test the feasibility of cognitive 

radios and their ability to benignly share the spectrum with licensed users using software 

defined radio tools [13], [14], [15]. In this thesis, we use the Ettus USRP devices to 

implement a testbed of a cognitive radio system. 

Source localization for cognitive radio using wireless sensor nodes and 

cooperative spectrum sensing algorithms remains an active area of research because 

current localization schemes seem to be inefficient when dealing with this type of 

devices. Thus, multiple solutions based on the previously mentioned approaches are 

proposed, such as the semi range-based location scheme, the cooperative received signal 

strength localization scheme and the extended semi range-based location scheme [1], [2] 

[9]. In this work, we adopt the ESRB and the CRSSB localization schemes to estimate 

the position of a cognitive radio device and to demonstrate the scheme ability to such 

devices.  

C. THESIS OUTLINE  

A background on cognitive radio characteristics and applications is provided in 

Chapter II, along with an overview of the software defined radio design approach and 

source localization schemes. In Chapter III, the conceptual diagram of the overall 

proposed scenario to test the ESRB and the CRSSB localization schemes is provided. The 

testbed scenario used to implement the ESRB and CRSSB localization scheme, along 

with test results, are presented in Chapter IV. A summary of the achieved work, the 

significant results accomplished in this work and perspectives for future work are 
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included in Chapter V. The GNU Radio code used to perform the overall testbed 

development and testing is provided in the appendix.  
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II. BACKGROUND 

In Chapter I, the cognitive radio was mentioned as a solution for the spectrum 

scarcity problem; however, this solution brings new challenges, especially in a source 

localization process. An overview of cognitive radio and source localization using a 

wireless radio frequency sensor network is provided in Sections A and C of this chapter, 

respectively. A discussion of software defined radio and an examination of its 

characteristics and benefits is explained in Section B. 

A. COGNITIVE RADIO 

In [16], the Federal Communications Commission (FCC) defines cognitive radio 

as 

A radio or system that senses its operational electromagnetic environment 
and can dynamically and autonomously adjust its radio operating 
parameters to modify system operation, such as maximize throughput, 
mitigate interference, facilitate interoperability, access secondary markets. 

The FCC also dictated specific terminology for the cognitive environment in 

which: 

• A primary user is defined as the licensed user of a specific spectrum band 
in a specific area; it has the highest priority and privilege of access in that 
band [3].  

• A secondary user is defined as an unlicensed user that can 
opportunistically access the frequency spectrum without causing any 
interference to a primary user [3].  

• Black spaces are bands of frequency that are occupied by a high-power 
signal from time-to-time; it is necessary for the secondary user to avoid 
using black spaces at that specific time [3]. 

• Grey spaces are channels occupied by a low power signal. The secondary 
user can consider those spaces for use in extreme needs [3]. 

• White spaces or spectrum holes are the opportunities that a secondary user 
is mainly looking for because they are signal-free except for 
environmental noise [3]. 
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1. Cognitive Cycle 

For a secondary user to be able to opportunistically use the white space, it must 

have the cognitive radio capabilities as outlined in the FCC description [16]. The 

cognitive radio architecture is based on the cognitive cycle. It is composed of four major 

interconnected functions, spectrum sensing, spectrum management, spectrum mobility, 

and spectrum sharing, as shown in Figure 1. 

 
Figure 1.  Cognitive cycle (from [17]). 

Spectrum sensing is defined as the process that permits the cognitive radio to 

detect primary users, to create a picture of the spectrum occupancy and find white space 

that can be shared without any harmful interference between the primary and the 

secondary users. This is the most important process required in the cognitive radio  

design [17]. The next subsection is dedicated to the description of the spectrum sensing 

process.  
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Spectrum management is the task of analyzing the results of the spectrum sensing 

functions and deciding the best available white space that satisfies the communication 

quality-of-service (QoS) requirements [17]. Spectrum mobility is responsible for 

exchanging the secondary user’s operating frequency when it is necessary to avoid 

interference between primary users and the secondary user [17]. Spectrum sharing is 

responsible for managing the use of the spectrum and guaranteeing that it is shared 

among the users (primary and secondary users) without any degradation on the QoS. It is 

the most challenging task in the cognitive radio design [17]. 

2. Spectrum Sensing 

Observing the radio environment over a long period of time shows that its 

behavior is not static over time but may change at any time. In order to keep the spectrum 

sharing benign, secondary users must be able to back off from operating in a given 

frequency band whenever the primary user needs to utilize that band; therefore, the 

frequency band-of-interest should be periodically sensed before any access by a 

secondary user [14], [7], [14]. 

Spectrum sensing is defined in [18] as “the art of performing measurements on a 

part of the spectrum and forming a decision related to spectrum usage based upon the 

measured data.” Typically, spectrum sensing provides knowledge of instantaneous 

occupancy of the frequency band-of-interest. This requires examining a narrow sub-band 

(or channel) over a short period of time in order to be able to identify whether or not a 

primary user is occupying this sub-band [2], [18], [19].  

The following sub-sections highlight three of the most common spectrum sensing 

methods: 1) energy detection-based methods, 2) cyclostationary-based methods, and 3) 

matched filter-based-methods. 

a. Energy Detection-Based Method 

The energy detection spectrum sensing method is the most widely used method 

because of its simplicity and low computational cost [3]. Detection is based on 

calculating the average energy of a received signal at a particular channel over a short 
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period of time and then comparing it to a threshold [3], [20]; hence, no prior knowledge 

of the signal features is required, only the noise level in the spectrum band-of-interest is 

needed to set up the detection threshold β to be able to determine one of the two 

hypotheses (H0 or H1):  

 
( )

( ) ( )
0

1

,
( )         ,           0

,
n

x
s n

P t H
P t t T

hP t P t H
= < ≤ +

 (1)   

where Px(t) is the power of the received signal,  Ps(t) is the transmitted signal power from 

primary user, Pn(t) is the noise level in the surrounding environment, h corresponds to the 

channel attenuation, t is time, and T is the time period [11], [19]. 

In the case of hypothesis H0, a free or unoccupied channel is detected; thus, a 

secondary user can opportunistically use it. In the case of hypothesis H1, a busy or 

occupied channel is identified, and cannot be used by secondary users [4], [5], [19].  

b. Cyclostationary-Based Method 

Since any modulated signal presents a periodicity in its behavior, the 

cyclostationary-based spectrum sensing method offers an alternative to the energy 

detection based method by taking advantage of the signal statistical properties [2], [8], 

[20]. The detection process is realized by retrieving the cyclostationarity property of the 

received signal which corresponds to the unique cycle frequency, taken from the spectral 

correlation function given by [3] 

 
( ) ( ) 2, j f

xS f R e dς π τς τ τ
∞

−

−∞

= ∫
 (2) 

where ( )xRς τ is the cyclic autocorrelation function determined by [20] 

 ( ) ( ) ( ){ }* 2j t
xR E x t x t eς πςτ τ τ −= + −

 (3) 

x(t) is the detected signal and ς is the cyclic frequency [20].  

This method has more advantages than the previous method. With this technique, 

it is possible to differentiate among detected users (primary or secondary), and the 

detection of low signal-to-noise ratio (SNR) signals is feasible [3]. This approach 
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requires a priori knowledge of the cyclostationary properties of the transmitted signal [3], 

[8].  

c. Matched Filter-Based Method 

The matched filter spectrum sensing technique is the optimal detection method of 

all the previously mentioned methods for three reasons: 1) it has the shortest processing 

time, 2) it achieves the lowest probability of false alarms, and 3) it makes detection 

possible even for low SNR signals [3], [20]. 

To accomplish detection, the received signal is cross-correlated with a locally 

generated signal similar to the transmitted one (having the same features) [3], [20]. This 

detection technique requires a complete knowledge of the transmitted signal, which is a 

drawback given that some information may be unavailable in advance [3], [20]. 

Additionally, the hardware implementation of this technique is very complex, especially 

in the case of the detection of multiple signals. The receiver’s design in this case requires 

the use of a separate matched filter for each channel of interest [3].   

3. Cooperative Spectrum Sensing 

The effectiveness of spectrum sensing methods for a single sensor node is limited 

by the fact that a single sensor node can misidentify the presence of a primary user if the 

transmitted signal experiences any type of multipath fading or non-line-of-sight 

conditions [20]. To overcome this problem and to be able to obtain an effective global 

result, a cooperative spectrum sensing solution is introduced in [20]. In this approach, 

many sensors are dispersed to cover an area of interest and configured to share spectrum 

information with each other through a single decision station in which a global decision is 

processed [2], [20]. 

Three essential steps define the cooperative spectrum sensing technique [21]. 

First, a sensor node carries out local sensing and checks whether the sensed channel is 

occupied. Second, the individual sensor node decisions are sent to the decision maker 

node where they are collected and further processed to form a global decision on the 

occupancy of the sensed channel based on a predefined decision rule. For example, the 
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logical OR rule may be used when a channel is declared busy if only one individual 

decision declares it so [21].  

4. Application of Cognitive Radio: IEEE 802.22 Standard 

Cognitive radio represents the next generation technology in wireless 

communications. It is a promising technique for several markets, such as public safety 

and military communications. The most relevant application is the implementation of an 

operating cognitive radio network on top of a television broadcast network. In early 2002, 

the IEEE 802.22 working group presented the wireless regional area network  standard, 

which provides guidelines on using cognitive radio networks to supply broadband 

wireless last mile access in rural areas [20], [21]. 

Fundamentally, a deployed cognitive radio should not cause any interference to 

the existing television network (primary user); hence, those users are required to sense 

the spectrum before accessing channel in order to prevent collisions with the primary user 

[3], [6], [19], [20]. 

a. Wireless Regional Area Network Deployment Scenario and Cognitive 
Radio Architecture 

A deployment scenario for wireless regional area networks is shown in Figure 2. 

The IEEE 802.22 standard proposes a centralized topology for the wireless regional area 

network (a point-to-multipoint architecture), which means that a single base station is 

able to manage every single station (consumer premise equipment) within its area of 

coverage or cell [6], [9], [22]. The base station is capable of controlling communication 

and media access of up to 255 consumer premise equipment terminals. 

 The standard proposes a multi-layer based architecture for the operating 

cognitive radios in the wireless regional area network, as shown in Figure 3 [6], [10], 

[22]. The physical layer provides the necessary functionality to support cognitive ability, 

such as spectrum sensing and data communication functions [6], [10]. 
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Figure 2.  Deployment scenario of a wireless regional area network (WRAN) 

over TV network (from [22]). 

Second, the medium access control (MAC) layer coordinates access to the media 

and synchronization between cells by managing the spectrum access that is promoted by 

using a superframe configuration. A superframe is composed of 16 MAC frames of ten 

milliseconds each, which make one superframe’s duration equal to 160 milliseconds [2], 

[6], [10]. Finally, the higher layers (e.g., IP and ATM) are responsible for maintaining a 

good communication QoS [6], [10], [22]. 

b. Spectrum Sensing in the IEEE 802.22 Standard 

The IEEE 802.22 standard dictates that cognitive radio network elements should 

be aware of the spectrum occupancy instantaneously. This functionality is performed 

using 1) the predefined television channel usage database and 2) spectrum sensing [6] 

[10], [22]. The cooperative spectrum sensing technique is the method suggested by the 

standard. The central base station is deployed as the decision-maker station, which may 

instruct each sensor node to carry out spectrum sensing in order to identify the occupancy 

of a channel of interest [20], [21]. 
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Figure 3.  Reference architecture for cognitive radio operating in IEEE 802.22 

standard (from [10], [22]). 

The sensing process is accomplished in two steps: coarse and the fine sensing. 

Coarse sensing is performed quickly (less than 1 ms) so that a general idea of the 

spectrum occupancy is obtained; usually, an energy-detection-based technique is used in 

this step. Based on the generated results, and to have a more precise measurement, the 

base station (decision maker) may command a sensor to execute fine sensing in a specific 

channel. Fine sensing is usually based on more sophisticated techniques than energy-

detection-based methods (cyclostationary or matched filter based techniques) [20], [21].  

B. SOFTWARE DEFINED RADIO 

The increase in the pace of development of wireless communication devices has 

led to a variety of protocols and standards [13]. To be able to communicate with other 

devices operating with different network protocols, an up-to-date communication system 

should be able 1) to interface with any other system in the market, 2) to easily respond to 

upgrades of eventual innovation, and 3) to support integrated services [13]. In order for 
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these devices to be able to set up a reliable communication with an acceptable QoS, they 

have to be capable of changing their features dynamically and adapting themselves to the 

required communication characteristics. Software Defined Radio (SDR) architecture is a 

satisfactory solution for the previously mentioned needs since the radio is capable of 

reconfiguring itself and altering its features to accommodate the network requirements 

[13].  

1. Software Defined Radio (SDR) 

In 1991, Mitola presented software defined radios that had the capability to be 

dynamically reprogrammed and reconfigured [13]. Later on, the Software Defined  Radio 

Forum characterized the ultimate software radio (USR) as a radio with the ability to be 

fully programmable through control information and to be capable of operating over a 

wide frequency band [13]. A more realistic definition for software defined radios is stated 

as 

a software defined radio is a radio exhibiting some control on the radio 
frequency hardware by reprogramming some of its features, such as the 
modulation scheme, encryption, and error correction process. As a result, 
the same hardware can be used to accomplish different tasks at different 
times [13]. 

2. Software Defined Radio Model 

A practical model for a software defined radio is shown in Figure 4. Its main 

components are 1) a flexible radio frequency hardware, 2) an analog-to-digital converter 

(ADC) and digital-to-analog converter (DAC), 3) a channelization and sampling rate 

converter, and 4) a processor (hardware and software). The use of a smart antenna 

permits the radio to minimize the noise and multipath fading effects on the received 

signal [13]. The main purpose of the flexible radio frequency hardware is to convert the 

received signal to an intermediate frequency in the receiver and to translate an 

intermediate frequency signal to the desired frequency in the transmitter [13]. 
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Figure 4.  Software defined radio typical model (from [13]). 

The analog-to-digital converters and digital-to-analog converters permit the 

conversion of the analog intermediate frequency signal to a digital signal and the 

processed digital data to an analog intermediate frequency signal, respectively. For most 

software defined radios operating as receivers, the conversion of the analog signal to the 

digital domain is done as quickly as possible to allow the maximum number of the signal 

processing tasks in the digital domain since digital algorithm implementations are easier 

than analog tasks. In case of the transmitter, most of the signal-processing tasks are 

carried out in the digital domain before conversion to the analog domain and transmission 

[13]. 

The channelization and sampling rate conversion block allows interfacing 

between the analog-to-digital converter and the processing hardware and adapts the 

output sampling rate of the analog-to-digital converter to the rate supported by the 

processing hardware (e.g., field programmable gate array) and vice versa [13]. The 

processing function is meant to accomplish all the digital signal processing functionalities 

(e.g., modulation and demodulation) using either software (e.g., GNU Radio, and 

Simulink) or reprogrammable hardware, such as field programmable gate arrays and 

application specific integrated circuits [13]. 
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3. Benefits 

Software defined radios allow service providers to easily and quickly upgrade 

their infrastructure to meet the requirement of integration with other networks. This can 

be done by taking advantage of the flexible software defined radio architecture, which 

allows the radio to alter its features and to meet the desired communication QoS. 

Additionally, software defined radios have the capability to operate in accordance with 

multiple standards and protocols in different regions, which defines its global mobility 

feature [13]. 

A software defined radio device is a great tool for research and development 

(R&D) in networking and communications fields because of its reconfigurability feature; 

the device may be reconfigured many times in a testbed scenario. Also, software defined 

radios are compact and power efficient since the same piece of hardware can be reused to 

perform different tasks and interfaces [13]. 

A large variety of software defined radio products are commercially available 

today. The most common products for R&D use are from the Ettus Research (USRPs) 

and Epiq Solutions, which are fairly inexpensive low power reconfigurable radio systems 

with high capability and wide frequency range. Many venders are marketing their 

software defined radio products for safety and military use, such as the R&S M3TR from 

Rohde & Schwarz and the Harris XG26P from Harris Corp. 

C. LOCALIZATION USING WIRELESS RADIO FREQUENCY 
SENSORS NETWORK  

Source localization is a very important task, especially in the case of security and 

military applications. Various localization techniques that permit a wireless system to 

locate itself or other operating wireless devices in the same neighborhood can be found in 

the literature [1], [23], [24]. Those schemes can be categorized as range-free and range-

based localization techniques [1], [24].  

Range-based localization schemes accomplish position estimation in two phases 

[25]. First is the ranging phase, in which the algorithms try to estimate the range between 

the receiver and the transmitter using one of the common metrics (e.g., time-of-arrival, 
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time-difference-of-arrival, and received-signal-strength). Second is the localization phase, 

in which the position of a transmitter is estimated by intersecting three or more estimated 

ranges from different sensor nodes with known positions [25]. Range-free localization 

schemes permit estimation of the position of a radio device using a wireless sensor 

network; thus, multiple sensors with known positions are dispersed in the area-of-interest 

and configured to cooperate [26]. 

These two schemes are not able to provide good position estimations in the case 

of cognitive radio localization [27]. This is because both techniques lack the capability to 

change their features as the cognitive radio changes. Consequently, any scheme meant to 

locate a cognitive radio and accurately estimate its position must support some level of 

adaptation and be able to account for the capability of the target radio to hop from one 

frequency to another over time [27]. Semi-range based localization is a feasible solution 

for this problem. 

1. Semi-Range-Based Localization Scheme 

This scheme was proposed to estimate the position of a primary user in a 

cognitive radio environment [24]. The secondary users in this case form a wireless sensor 

network to perform cooperative spectrum sensing. The results are then used to draw a 

map of the spectrum occupancy, and the map is used to estimate the location of the 

desired primary user [24]. 

Given that the position of each sensor node is known in advance, the scheme 

relies on exploiting the relationship between the probability of detection and the distance 

of the secondary user to the primary user [24]. This technique accomplishes location 

estimations by taking advantage of both range-based and range-free localization 

estimation methods. The processing is performed in two steps. First, the probability of 

detection for a primary user is estimated using the binary decision of local spectrum 

sensing reported by each sensor node (secondary user in this case). Second, the position 

of the desired primary user is estimated using the probability of detection and the 

received-signal level, similar to the way estimation is carried out by a range-based 

scheme [24].  
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To be highly accurate, the semi-range localization scheme requires a priori 

knowledge of the transmitted power by the primary user, which is a major drawback of 

this technique because it violates the fundamentals of cognitive radio environment; no 

cooperation is allowed between primary user and secondary user [2]. A solution to this 

problem was proposed in [23] as a practical semi range-based localization method. This 

algorithm reduces the need for a priori knowledge of the transmitted signal power by 

estimating it during the localization process using the non-linear-least-square method; 

however, neither technique provides an accurate position estimate, especially in the case 

of locating a secondary user in a cognitive radio environment [2]. 

2. Extended Semi-Range-Based Localization Scheme  

In [1], an extended semi-range-based (ESRB) localization scheme was proposed 

to accurately estimate the position of cognitive radio using wireless sensor network. The 

conceptual diagram of the ESRB is shown in Figure 5. The algorithm relies on four 

primary aspects: 1) cooperative spectrum sensing, 2) spectral environment mapping, 3) 

localization through the iterative nonlinear least-squared method, and 4) position 

refinement [1], [2]. Overviews of each aspect of the functionalities are provided in the 

following subsections. 

a. Spectrum Sensing 

This task takes place at each sensor node of the wireless sensor network in order 

to determine if channels are occupied over a period of time [2]; therefore, the sensor node 

performs an energy detection process at each channel. The decision data is recorded into 

a spectral scanning report in which occupied channels are identified using a binary ‘1’, 

and unoccupied channels are identified using a binary ‘0.’ After the overall spectrum of 

interest is scanned, the scan report is transferred to the decision maker for further 

processing [2]. 
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Figure 5.  Conceptual diagram of the proposed extended-semi-range-based 

(ESRB) localization scheme for cognitive radio positioning (from [2]). 

b. Spectral Environment Mapping  

This process is carried out at the decision maker and is performed by interpreting 

the collected scan reports from each sensor node [2]. The main goal of this task is to 

differentiate between occupied and unoccupied channels by drawing the spectral 

environment map; thus, a cooperative spectral sensing process is executed. In order to 

optimize the detection algorithm efficiency, the majority decision rule is the adopted 

approach, in which a channel is declared as occupied if the number of sensors indicating 

that it is a busy channel is more than half of the total number of sensor nodes. Only 
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identified busy channels with their corresponding signal level are transferred to the next 

processing level [2]. 

c. Localization   

The main purpose of this task is to identify whether the present user is a primary 

or a secondary user. For each occupied channel, an estimation of the present user position 

is calculated and compared to previously known primary users’ positions (available in a 

geo-location database) [2]. Any estimated position that matches within an acceptable 

error (predefined level of tolerance) with any available position in the geo-localization 

data base is discarded. If the position estimate does not match with any primary user 

position, it is considered a potential secondary user or user-of-interest, and its position 

estimate is stored to form the history and is fed to the position refinement process [2]. 

d. Position Refinement 

The intention behind this process is to evaluate the results of the previous process 

to provide accurate positions for the secondary users [2]. The position refinement process 

manages the history of the discovered user-of-interest. For all received data, the process 

tries to determine if any of the new position estimates match with old positions within a 

radius of tolerance. Matched positions are merged together, and positions that have been 

recorded multiple times are declared to be a secondary user. If no match is found, the 

newly discovered position is recorded as a new secondary user, and the estimated 

position is entered in the history record [2].  

3. Cooperative-Received-Signal-Strength-Based Localization Schemes 

In the cooperative-received-signal-strength-based (CRSSB) localization schemes, 

the distance between the transmitter and the receiver is estimated based the calculated 

squared-magnitude of the signal and the channel propagation attenuation model [9]. To 

be accurate on distance estimation, any localization scheme based on received signal 

strength requires an accurate channel propagation model. Classical received-signal-

strength-based localization schemes require a priori knowledge of the effective isotropic 

radiated power of the transmitter to obtain an acceptable location estimation. This is a 
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drawback of the technique, especially when the effective isotropic radiated power of the 

transmitter of interest is unknown; however, this kind of scheme is considered a low cost 

localization technique because it is relatively easy to implement. 

In [9], an algorithm using the received-signal-strength metric without any 

knowledge of the effective isotropic radiated power of transmitter in advance is proposed 

in order to optimize the effectiveness of this scheme in cognitive environment. First, all 

sensor nodes apply a fast spectrum sensing (for a short period-of-time) to obtain an idea 

of the occupancy of the spectrum-of-interest and report the calculated energy at the 

channel to the decision maker. Based on those energies, the decision maker decides 

which sensor nodes need to apply an additional fine spectrum sensing (nodes with the 

highest energy are chosen). Second, the chosen sensor nodes carry out a fine spectrum 

sensing to determine a more accurate energy estimation of the signal occupying the 

channel and report the estimated energy to the decision maker. Third, the decision maker 

uses the received energy estimates and the positions of the sensor nodes to estimate the 

transmitter positions using a received-signal-strength technique. Finally, the estimated 

positions are compared to the primary user positions. If a match is found within an 

acceptable level of tolerance, the position estimate is discarded. If no matched is found, 

the estimate becomes the position of a potential secondary user [9]. 

In this chapter, an overview of cognitive radio characteristics and applications 

was presented to illustrate how this concept can be used to overcome the problem of 

spectrum scarcity, and an outline of software-defined radio characteristics and benefits 

was provided. Multiple source localization schemes were introduced, along with an 

explanation of the ESRB and CRSSB localization schemes for cognitive radio. In 

Chapter III, a conceptual design of a cognitive radio environment is proposed to 

implement and test the feasibility of the ESRB and the CRSSB localization schemes.  
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III. COGNITIVE RADIO ENVIRONMENT CONCEPTUAL 
DESIGN  

The main advantage of a cognitive radio is its ability to modify its attributes over 

time (e.g., frequency and modulation) in order to adapt to the surrounding environment 

and avoid interference with primary users [1], [6], [11]; however, source localization is 

very challenging when considering this type of device for two reasons. First, any source 

localization scheme must be able to adapt along with the cognitive radio as it changes. 

Second, it requires keeping track of the radio’s frequency occupancy to distinguish 

between primary and secondary users of the frequency spectrum [2], [24]. The ESRB and 

CRSSB localization schemes were proposed in [1] and [9], respectively, to overcome the 

challenge of identifying and tracking the position of a cognitive radio over time. 

An overview of the proposed software-defined radio testbed and its schematic 

diagram are given in Section A of this chapter. An outline of the scenario design along 

with a detailed explanation of the design principals of each element of the cognitive radio 

system are provided in Section B of this chapter. Finally, the decision-maker design is 

presented in Section C. 

A. PROPOSED SCHEME 

To test the feasibility of the ESRB localization scheme, a scenario was introduced 

in [1] that demonstrated how a wireless sensor network can be used to locate and track a 

cognitive radio over time. The scheme’s underlying principle is the monitoring of the 

environment’s temporal parameters (i.e., position and frequency occupancy) in a 

collaborative manner to determine the cognitive radio’s position [1]. To accomplish this, 

the scheme relies on multiple sensor nodes to create a wireless radio frequency sensor 

network. The collected measurements from each sensor are used in a collaborative 

manner to obtain spectrum sensing results. These results are in turn used to estimate the 

position of the emitter-of-interest (cognitive radio) [1], [2]. 

The developed software-defined radio-based cognitive radio system used to 

implement the testing scenario is explained in this section. The schematic diagram of the 
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proposed system is shown in Figure 6. The proposed hardware testbed system consists of 

four major parts: the primary users who have the right to access a frequency band-of-

interest, a secondary user who can opportunistically access the same frequency band 

when the primary users are idle, a sensor network consisting of multiple radio frequency 

sensor nodes that continuously measure the signal strengths of both the primary and 

secondary users, and a location estimation scheme to determine the position of the 

secondary user. 

 
Figure 6.  Proposed scheme for location estimation of a CR in a dynamic 

frequency environment. 

First, a wireless sensor network is deployed in an area-of-interest in which 

primary users and a single secondary user are sharing the same frequency band. Second, 

each sensor node performs spectrum sensing in the band of interest to determine whether 

a user is present by comparing the measured signal to a preselected threshold. Third, a 

preprocessing and detection process is carried out in order to differentiate between the 

primary user and the secondary user. Finally, the localization estimation process is 

accomplished using the output of the previous process and the ESRB or the CRSSB 

localization algorithms. Each function of the proposed scheme is explained in detail in 

the following sections. 

B. SCENARIO DESIGN 

The goal of the proposed scheme is to estimate the location of the secondary user 

in a cognitive radio environment and to track the secondary user’s frequency occupancy 

over time using a collaborative spectrum sensing approach [1], [2]. The scenario is 

designed to test the performance of the ESRB and the CRSSB schemes using a wireless 

sensor network as illustrated in Figure 7. The testing scenario consists of multiple sensor 

nodes that are randomly distributed in an area-of-interest (the secondary user 
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environment) in which several primary users are present and a single secondary user is 

deployed. Additionally, a decision maker is located within the sensor nodes in order to 

process the collected measurement and return the estimated position of the secondary 

user. All of the primary users and sensor nodes’ positions are assumed to be known in 

advance and stored in a geo-localization database [2]. 

 
Figure 7.  Geolocation scenario for cognitive radio using a wireless radio 

frequency sensor network (from [2]). 

This scenario is based on IEEE 802.22 standard. An overview of the design of 

each component is provided in the following subsections. 

1. Wireless Sensor Network 

Multiple sensor nodes are deployed in the area-of-interest and connected to the 

decision maker, which together form a wireless radio frequency sensor network. A sensor 

node consists of a radio frequency sensor to measure the signal from the primary and 

secondary users, a transceiver to send/receive the measurements as appropriate, and a 

processor to undertake any local processing of the measurements. The role of each sensor 
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node is to examine the whole frequency spectrum-of-interest and send a spectral scan 

report to the decision maker [1], [2]. The spectral scan report consists of a binary 0 or 1 

reflecting the estimated channel energy as either vacant or occupied, respectively [2]. 

Multi-bit spectral scan reports utilizing multiple threshold levels are also possible. For 

example, a 2-bit scheme uses three threshold levels. While the complexity of 

implementation increases, these schemes have been shown to provide improved 

performance [20].  

The spectral scanning process is done in three steps: tune, listen, and decide [6]. 

To determine the occupancy of the spectrum, an energy detection approach is adopted in 

this work [2] because it is the least complicated in the implementation process compared 

to other spectrum sensing schemes (e.g., matched filter detection and cyclostationary 

detection) [3], [20]. No prior knowledge (modulation scheme) of the signal is required to 

confirm its absence or presence [3], [20]. 

A complete spectrum scan consists of an examination of each frequency channel-

of-interest in which the signal energy E is calculated as 
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where Ii and Qi are the ith symbol’s in-phase and quadrature components, respectively, 

and N is the total number of samples.  

If E ≥ β (where β is a preselected threshold value), a signal is assumed to be 

present (i.e., we have a busy channel) and an associated binary ‘1’, the channel energy, 

and the channel number are added to the scan report [2]. If E < β, then no signal is 

present (i.e., we have a free channel), so a binary ‘0’ is associated with the channel 

number and added to the scan report. The sensor then tunes to the next channel and 

repeats the same steps. After the whole spectrum-of-interest has been surveyed, a finished 

scan report is sent to the decision maker for further processing. This spectral scanning 

process is repeated indefinitely as shown in Figure 8 [2]. 
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Figure 8.  Sensors node state diagram 

2. Primary User Network 

The primary user network is composed of multiple primary users, each with an 

allocated fixed frequency band or channel. A frequency-division multiple accesses 

(FDMA) approach is adopted in the primary users’ network design to ensure that adjacent 

channels do not overlap [2]. This design approach is also followed by the sensor nodes 

and is integral to the energy detection spectrum sensing approach because sensor nodes 

do not have the capability to differentiate among the primary user signals. 

In terms of occupancy, the primary user’s behavior follows a two-state Markov 

model as shown in Figure 9 [2], [24]. The primary user alternates between the idle and 

busy states (pi and pb are the respective transition probabilities) for different periods of 

time. During the idle state, no traffic is broadcast, leaving unoccupied frequency bands 

available (white spaces) for either a short period-of-time between the adjacent 

superframes or for the duration of a complete superframe. During the busy state, the 

primary user transmits a fixed amplitude signal in order to keep the channel occupied for 

a complete superframe [2], [24]. 
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Figure 9.  Two-state Markov model of primary users channel occupancy; pi 

and pb are the state transition probabilities (from [2]). 

3. Secondary User 

The design of the secondary user (cognitive radio) is based on the IEEE 802.22 

standard [6], [10]. Most of the definitions and functions for the cognitive radio building 

blocks and their interconnection are provided by the standard and were taken into 

consideration in designing the secondary user for this scenario. The cognitive radio 

system state diagram consists of three major components: spectrum sensing, decision 

making, and data transmission as shown in Figure 10 [6], [10]. 

a. Spectrum Sensing 

 To minimize the probability of interference with primary users, the IEEE 802.22 

standard dictates use of a coarse and fine spectrum sensing approach in the secondary 

user’s design as mentioned in Chapter II [2], [7], [10]. First, coarse sensing is carried out 

using energy detection. Based on results of the coarse sensing and in order to have more 

accurate measurements of the spectrum occupancy, fine sensing may be carried out using 

other spectrum sensing methods (e.g., matched filter detection or cyclostationary) [2], [7], 

[10]. 

Only coarse spectrum sensing is adopted in this work since fine sensing requires 

the implementation of more complex algorithms to determine the primary user signal 

characteristics [2]. The cognitive radio carries out in-band sensing without identifying a 

specific modulation technique. Afterwards, the estimated signal energy is transferred to 

the decision making block [2]. 
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b. Decision Making 

In this step, the received energy is compared to the threshold in order to identify 

the presence of the primary user or white space. If a busy channel is identified, the 

spectrum sensing process is carried out in the adjacent channel. If a free channel is 

identified, the center frequency of the channel is sent to the data transmission block [2]. 

c. Data Transmission 

The focus of this step is to generate and send data. The data generation process 

adopted in the scenario is a random binary packet generation process where multiple 

packets are placed within the length of a frame. Next, all packets are transferred to the 

transmission process in order to be transmitted [2]. 

 
Figure 10.  Secondary user state diagram 

C. DECISION MAKER 

The main function of the decision maker is to estimate the secondary user’s 

position in the surrounding environment. The ESRB and the CRSSB localization scheme 

is adopted for this purpose, which compares the calculated position to that of the primary 
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user’s known positions. Users at unknown locations are assumed to be secondary users 

[1], [2], [9].  

1. Case 1: Extended Semi-Range-Based Localization Scheme 

After the sensor nodes conduct spectrum sensing and report their results, the 

decision maker develops a global spectrum occupancy map by aggregating the scan 

results of the entire wireless sensor network [2]. Then the decision maker identifies 

occupied channels over periods of time and attempts to discriminate the users within each 

of the occupied channels. That is, the decision maker attempts to determine which of the 

users is a primary user or a potential secondary user. After completing user 

discrimination, all potential secondary users, which are now users-of-interest, along with 

their recorded measurements (i.e., estimated position, estimated signal level, channel 

occupancy) are combined into a user-of-interest activity history [1], [2]. 

When the next spectral scan is received, the decision maker repeats the previous 

steps and compares the newly estimated position to the previously stored reference 

position. If no match is found, the data is discarded; however, if the new position matches 

within acceptable level of tolerance with the reference position, the two results are 

merged together to form an updated user-of-interest activity history [1], [2]. 

This updated history is fed back into a refinement position process where the 

estimated positions of all secondary users are calculated. The final step is a cross-

reference of the calculated potential secondary user position with primary user geo-

localization data-base to ensure that the results do not overlap with a primary user. All of 

the estimated positions are confirmed if they have been validated for multiple iterations 

[2]. 

2. Case 2: Cooperative-Received-Signal-Strength-Based Scheme 

All sensor nodes apply fast spectrum sensing, calculate the energy at the channel, 

and report the calculated energy to the decision maker. Based on those energy values, the 

decision maker decides which sensor nodes have to apply an additional fine spectrum 

sensing (nodes with the highest energy are chosen). The chosen sensor nodes carry out 
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fine spectrum sensing to determine a more accurate energy estimation of the signal 

occupying the channel and report the estimated energy to the decision maker. In this 

work, we only adopted the coarse sensing technique using the energy detection based 

method because implementation of fine spectrum sensing using cyclostationary or 

matched filter methods requires a computationally intensive algorithm [9]. 

The decision maker uses the received energy values and the positions of the 

sensor nodes to estimate the transmitter positions using a received-signal-strength 

technique. Finally, the estimated positions are compared to the primary user positions 

(from the geo-localization database). If a match is found within an acceptable level-of-

tolerance, the position estimate is discarded. If no matched is found, the position estimate 

is considered the position of a potential secondary user [9]. 

In this chapter, a discussion of the proposed scheme to validate the ESRB and 

CRSSB localization algorithms were provided. Each component of the environment was 

examined, and a conceptual diagram behind each design was given. In the next chapter, 

the performances of the proposed schemes are demonstrated through a real world 

implementation. The scenario testbed design and an analysis of the physical 

implementation of the preceding components are provided. Intermediate test results that 

are used to validate the component’s operating parameters are contained in Chapter IV as 

well. 
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IV. IMPLEMENTATION MODEL AND RESULTS 

An explanation of the conceptual model, designed to demonstrate the 

performance of the ESRP localization scheme, was provided in Chapter III. All functions 

were explained for each of the elements: 1) sensor node, 2) primary users, 3) secondary 

user, and 4) decision maker. The implementation of the proposed testing scenario is 

presented in this chapter. An overview of the developed experimental platform is 

provided in Section A. The proposed testbed and implementation of each element are 

described in detail in Section B. The overall testing scenario, results, and discussion are 

presented in Section C. 

A. EXPERIMENTAL PLATFORM 

The platform used for the physical implementation of each element of the testing 

scenario is described in this section. All elements were developed through software 

defined radios. Part of the signal processing design was accomplished by the host 

machine (laptop) using GNU Radio programming software, while the other part was 

undertaken by the Universal Software Radio Peripheral (USRP). In the first subsection, a 

description of the hardware used is provided. An overview of the GNU Radio software 

and how it was used to design each baseband network element is given in the second 

subsection.   

1. USRP 

The Universal Software Radio Peripheral (USRP) is a hardware device developed 

by Ettus Research which gives engineers the capability to develop and implement flexible 

software defined radios rapidly and with low cost [19]. In short, a software defined radio 

is a radio system which performs the required baseband signal processing tasks (e.g., 

modulation, demodulation, filtering) in a software platform instead of using dedicated 

hardware integrated circuits. The remainder of the digital signal processing tasks (e.g., 

up- and down-sampling and digital-to-analog converter (DAC)/analog-to-digital 

converter (ADC)) is accomplished via reprogrammable hardware [12]. Since any 

software design can easily be replaced in this kind of radio system, the same hardware 
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can be used to create many communication devices with different transmission standards, 

even those requiring high radio frequency performance and large bandwidth as needed in 

dynamic spectrum access for cognitive radios [4], [12], [14]. 

Ettus products are designed with a modular architecture, using a motherboard and 

daughterboard cards. The motherboard accomplishes some of the baseband processing on 

signals, such as the conversion of the signal from analog to digital [28]; however, the 

daughterboard permits performing analog operations on the signal (e.g., analog filtering, 

etc.). A large variety of daughterboards can be used with USRPs, depending upon the 

frequency range needed by the user. A photograph of the USRP N210 is shown in Figure 

11 [28]. 

 
Figure 11.  USRP N210 with WBX daughterboard. 

Ettus Research also developed two open source applications that are useful with 

their products. The USRP Hardware Driver provides the USRP with the ability to 

communicate with several platforms (Windows, Linux, and Mac OS) [26]. The USRP 

Application Programming Interface can be used by multiple software frameworks (GNU 

Radio, Simulink). Both applications provide many useful scripts [28]. In particular, the 
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find_devices script is useful because it enables a host machine to discover any connected 

devices and return their type and features [28]. 

Two devices from Ettus’ list of available products are used in this work: the N210 

radio with WBX daughterboard and the B200. The main features of these two devices are 

summarized in Table 1, where Msps is used to indicate mega-samples per second [26]. 

Table 1.   USRP N210 and B200 features. 

 

Both devices cover the bandwidth chosen to carry out the experimental testing in 

this work, the Industrial, Scientific and Medical (ISM) radio band (902-928 MHz). Each 

device is capable of introducing an internal noise source to the received signal. For 

example, the N210, which was used as a sensor node in this experiment, adds a noise 

figure of 5 dB. 

2. GNU Radio  

GNU Radio is an open-source software package developed for the 

implementation of signal processing and communication applications [19]. The official 

 N210+WBX daughterboard B200 

Interface Gigabit Ethernet USB 3.0/2.0 

ADC sample rate 100 Msps 61.44 Msps 

DAC sample rate 400 Msps 61.44 Msps 

Host sample rate  25 Msps 61.44 Msps 

Power output 15 dBm >10 dBm 

Received noise figure 5 dB <8 dB 

Frequency range 50 MHz-22 GHz 70 MHz-6 GHz 
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development project started at the Massachusetts Institute of Technology in 2000 and 

continues to be updated with new releases periodically [19], [29].  

The software contains a large number of widely used signal processing routines 

denoted as blocks (e.g., filter, modulators, and demodulators) which are written in C++ 

[19], [29]. Additionally, it has many Python scripts that can be used to tie the blocks 

together to form the baseband part of any desired radio configuration. Integration 

between Python and C++ is controlled by a Simplified Wrapper and Interface Generator 

(SWIG) [19]. 

Given the application, a routine can be developed as a collection of signal 

processing blocks tied together in simulation or can be implemented with a hardware 

device to form a software-defined radio. In the case of a receiver, as shown in Figure 12 

[30], the captured radio frequency signal is converted to an intermediate frequency by the 

radio frequency front end and passed through an analog-to-digital converter to be 

digitized. Complex samples go through a field-programmable gate array (FPGA) for 

digital signal processing tasks (e.g., data rate conversion) and pass to the host machine 

through either a Gigabit Ethernet or USB cable, where baseband processing tasks are 

executed. For transmission, the entire procedure is reversed. The preprocessed baseband 

samples are passed to the USRP from the host machine for further signal processing and 

digital-to-analog conversion and then converted to the desired RF frequency and 

transmitted [28]. 

B. TESTBED IMPLEMENTATION 

An in-depth explanation of each network element’s design and implementation is 

provided in this section. 

1. Primary User 

As mentioned in Chapter III, the main role of the primary user element is to 

transmit a fixed amplitude signal for the duration of one superframe. 
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Figure 12.  USRP and GNU Radio blocks and interconnections for software 

defined radio (from [28]). 

A more detailed analysis of how the design of the primary user routine 

accomplishes this requirement is given in this subsection. The banchmarck_tx.py script 

from the GNU Radio example library is modified to obtain the primary.py python routine 

and satisfy the design requirements.  

The purpose of the overall set up is to be able to locate a secondary user in a 

cognitive environment using a wireless sensor network. Given that energy detection is the 

only method of spectrum sensing being utilized by the wireless sensor network, the 

content of the primary user’s data does not matter because the sensor nodes are only 

measuring the signal energy level. For this implementation, the data used for transmission 

is randomly generated by applying the python line of code: 

data = (pkt_size - 2) * chr(pktno & 0xff) 

where chr is a python function which returns a string of one character whose ASCII code 

corresponds to an integer which is generated by using a binary AND on the packet 

number (pktno) and an 0xff hexadecimal number (matching with the decimal 255) [29]. 

The character is then multiplied by the packet size minus two bytes to form the packet’s 

payload. The minus two is to account for the two-byte header. 

In this work, the adopted design for data transmission is shown in Figure 13. First, 

data is generated as a random binary sequence and then put into 4000-byte packets using 

the GNU Radio function struct.pack (the maximum allowed packet size for this function 
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is 4096 bytes) which adds a two bytes header. All packets are sent to the modulator block 

using the send_pkt function from the packet_transmitter class, which provides a variety 

of modulation schemes that can be used for transmission (e.g., Phase-Shift Keying (PSK) 

and Quadrature Amplitude Modulation (QAM)). The baseband signal is then sent to the 

USRP in the form of in-phase (I) and quadrature (Q) complex samples to be further 

processed and transmitted over the air.  

 
Figure 13.  Transmitter flow graph 

The number of transmitted packets per burst N, the packet size L, and the USRP 

sampling rate FS define the superframe length, or burst duration TSF, as 

 8 .SF
S

NLT
F

=  (5) 

What matters most to the ESRP source localization algorithm is the number of 

scans that a sensor can achieve during one superframe. In this work, the duration of a 

superframe corresponds to the number of scans that a sensor can achieve during the 

duration of one superframe. To be efficient, the ESRP source localization algorithm 

requires a large number of scans per superframe. An experiment was conducted to test 

the relationship between the number of packets used to build one superframe and the 

number of scans completed. The results of this experiment are shown in Figure 14. The 

chosen superframe duration corresponds to the highlighted point in the curve, which 

corresponds to 55 scans (210 transmitted packets). 
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Figure 14.  Relationship between number of generated packet and scan reports 

for one superframe duration. 

Moreover, as mentioned in Chapter III, the primary user leaves portions of the 

frequency spectrum unoccupied (white space) at random intervals, which the secondary 

user can opportunistically share. To induce white space in the spectrum, a variable sleep 

time was set up between zero and two consecutive burst transmissions. Multiple 

measurements were carried out to help choose accurate values corresponding to a short 

quiet period between two consecutive superframes and a long quiet period equal to one or 

more superframe durations. The result of this is shown in Figure 15.  

Experimental testing showed that, for chosen short sleep periods, the signal of two 

consecutive bursts appeared to be a continuous wave. This can be explained by the fact 

that the USRP introduces a processing delay before transmitting packets. The short quiet 

period is added and corresponds to point A in the plot (13 s). 
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Figure 15.  Relationship between time delay and number of scan reports for 

quiet period. 

To realize variable large quiet periods that are equal to one or more superframe 

duration, additional testing was carried out to measure the sleeping time corresponding to 

55 scans (one superframe duration), which corresponds to point B in the plot (38 s). The 

38-s value is in fact a summation of the previously mentioned short quiet period (13 s) 

and the actual superframe duration (25 s). To have the desired random variation of large 

quiet periods, the measured duration of the superframe’s actual value is multiplied by a 

random integer value between 0 and three. The above process is coded in python using 

these two lines of code: 

k=random.randint(0,3)  

time.sleep(13+k*25). 

The random.randint(0,3) is a python function that returns a randomly (uniform 

distribution) selected element from the list (0, 1, 2, 3), and the time.sleep suspends the 

code execution for the given time delay. 
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2. Sensor Node 

An analysis and a detailed explanation of the routine sensor.py running the 

algorithm shown in the flow graph of Figure 16 is presented in this section. The routine 

was developed to accomplish the requirements of a sensor node stipulated in Chapter III 

and is based on an available python script in the GNU Radio library entitled 

usrp_spectrum_sensing.py.  

 
Figure 16.  Sensor node flow graph. 

a. USRP Initialization 

When the script begins, a number of user-selected parameters required by the 

device to properly run (e.g., sampling rate and vector size, gain) are immediately passed 

to the USRP after running the script by typing the following line of command in the 

Ubuntu terminal: 

Python sensor.py 917000000 918100000 -g 0 -b 500000 -F 1024 -FS 200000  

--tune_delay 0 .1 --dwell_delay 0.05 -thres -58 

Each of these parameters are explained in the following paragraphs. 
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The sampling rate FS is an important parameter that must be chosen carefully. 

Care is required because USRPs are programmed to discard any overflowing samples 

[28], which usually occurs when using a high sampling rate. This in turn causes a 

variable delay in the scan process in the sensor node. In order to avoid this phenomenon, 

the sampling rate used was the lowest supported by USRP N210 (200 kHz) [28]. 

Additionally, in the case of the transmitter, the sampling rate defines the bandwidth of the 

transmitted signal, which must be less than the channel separation to give non-

overlapping channels. 

The FFT (fast Fourier transform) size parameter F corresponds to the frame size 

of the FFT block and is exactly the size of the allocated buffer used to accumulate data 

before any FFT processing, which was arbitrarily set to 1024. 

The gain g corresponds to the receiver’s tuner card gain. By default, the gain is set 

to 15 dB, which is half of the maximum gain supported by USRP N210. [26] In this 

experiment, the receiver’s gain is set to 0 dB because experimental testing showed that 

using a gain at the receiver introduces a nonlinear increase in the noise level, which in 

turn leads to a high probability of false alarm as shown in Table 2 in the next section. 

The tune delay tune_delay is the wait time necessary for the USRP to tune to the 

next frequency. All the data collected during this time is discarded. For the overall 

experiment, the tune delay at sensor nodes is set to 0.1 s [30]. The dwell delay 

dwell_delay is the actual time that the USRP listens to a fixed frequency. Samples taken 

during this period form the FFT frame, which is set to 0.05 s [30]. 

The frequency range is the overall spectrum to be scanned. For this experiment, 

917 MHz to 918 MHz was chosen because this is a part of the 900 MHz ISM frequency 

band. The frequency step b corresponds to the separation between two adjacent channels 

in the frequency spectrum and was set to 0.5 MHz, which is greater than the transmitted 

signal bandwidth so that no overlap between adjacent channels occurs as dictated by the 

scenario design requirements. The total number of channels was three, which is the 

number of primary users in this scenario. 
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The threshold thres is selected in order to differentiate between the energy of a 

sensed signal and the noise level. A further explanation on how the threshold is selected 

is provided in subsection c. 

b. Data Flow  

After initialization, the USRP starts sending a stream of complex raw (I and Q) 

data to the host machine. All received samples during the tune delay are discarded. 

Samples arriving during the dwell delay are buffered to form a frame of the preselected 

FFT frame size (F = 1024) using the GNU Radio bit-stream-to-vector (s2v) block. The 

frame vector passes through the FFT block, which performs a fast Fourier transformation 

on the signal. A Blackman-Harris window is used to overcome the spectrum leakage 

effect of the FFT transformation on a non-periodic signal. This functionality is 

accomplished using the two GNU Radio blocks window.blackmanharris and fft_vcc as 

follows [30]: 

mywindow = filter.window.blackmanharris(self.fft_size) 

ffter = fft.fft_vcc(self.fft_size, True, mywindow, True). 

The output vector passes through the complex_to_mag_squared (c2mag) block, 

which calculates the squared-magnitude of each bin of the vector. The output is a float 

type data and is placed in an array defined as stats block and labeled m.data, whose 

length corresponds to the FFT size [30]. Finally, all the GNU Radio blocks forming the 

sensor.py flow graph are connected together using the connect function:  

self.connect(self.u, s2v, ffter, c2mag, stats). 

The first element of the m.data array corresponds to the center frequency of the 

scanned spectrum, while the next 513 elements correspond to the positive side of the 

channel (frequency domain representation). Conversely, the 514 to 1024 elements 

correspond to the negative side of channel [30]. As depicted in Figure 17, the USRP 

introduces a DC offset at the center frequency and slight distortion at both edges due to 

filtering irregularity. In order to improve accuracy when estimating the signal’s power, 

the first and the last 128 elements are discarded before averaging. The estimated average 

energy is determined in accordance with  
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where, |S[i]| corresponds to the magnitude of the ith element of the FFT output and F is 

the frame size of the FFT block.  

Next, the result is compared to a preselected threshold (noise level) to decide 

whether the channel is free or busy, and the result is recorded into the scan report. After 

completing the entire process, the script returns to the beginning, tunes the USRP to the 

next channel’s center frequency and repeats the process indefinitely.  

 
Figure 17.  USRP output showing DC offset and edges distortion 

c. Noise Level Estimation and Threshold Selection 

A python routine similar to the sensor.py routine is developed to estimate the 

noise level of the surrounding environment. The routine loops 1000 times and calculates 

the average energy for each channel. This intermediate test was carried out twice on the 

roof of Spanagel Hall at the Naval Postgraduate School, the first time using 0 dB gain at 

the receiver and the second time using a 15 dB gain. The results are shown in Table 2. 
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Table 2.   Measured noise level for each channel using two receiver 
gains. 

 Channel 1:  
917 MHz 

Channel 2:  
917.5 MHz 

Channel 3: 
918 MHz 

Average noise level 
(0 dB gain) −59.530 dBm −59.697 dBm −59.331 dBm 

Standard deviation 
(0 dB gain) 0.060  0.039  0.068  

Average noise level 
( 15 dB) −54.693 dBm −53.231 dBm −51.465 dBm 

Standard deviation 
(15 dB gain) 44.840  41.456  55.576  

 

The average noise level of the three channels with 0 dB gain is around −59 dBm. 

Information can be taken from the standard deviation, which is very small for all 

channels. This means that the noise level for 1000 iterations changes very slightly; 

however, using a 15 dB gain at the receiver introduces large changes to the noise level. 

This can be seen from the large standard deviation. This test supports the 0 dB gain 

choice. In order to choose a correct threshold, another test was carried out. This test was 

conducted to compute the probability of false alarm Pf corresponding to the number of 

times the average energy exceeding the preselected threshold NHE divided by the total 

number of iterations NT: 

 .HE
f

T

NP
N

=  (7)  

In the absence of any transmitter, a sensor is set to loop 1,000 times for three 

different threshold values (−59, −58.5, and −58 dBm). The results are recorded in Table 

3. A reasonable choice for the threshold seems to be −58 dBm, with probability of false 

alarm less than 5%, for two reasons: 1) a selection of a low threshold (high Pf) means that 

many opportunities may be lost which in turn reduces the efficiency of the system, 2) a 

selection of a high threshold (low Pf) leads to a possible misdetection of an eventually 

present primary user with a low signal level, which in turn causes interference between 

primary and secondary users. 
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Table 3.   Probability of false alarm for each channel with threshold set 
to −58, −58.5, −59 dBm and no primary is bursting. 

 Probability of false 
alarm Pf at channel 1 

Probability of false 
alarm Pf at channel 2 

Probability of false 
alarm Pf at channel 3 

−58 dBm 0.035 0.041 0.029 
−58.5 dBm 0.17 0.21 18.5 
−59 dBm 0.332 0.297 0.378 

 

d. Cognitive Environment 

The proposed scenario calls for an environment in which sensor nodes are 

deployed around the center of the area, and each node is capable of receiving signals 

from all of the primary users. To determine where to place each element of the network 

and verify that the experiment is carried out in the same condition as those of the 

simulations in [2], a preliminary test was carried out in order to measure the signal power 

as a function of distance. A primary user was set to send a continuous wave signal with 

fixed output energy and frequency (i.e., 0.1 W at 917 MHz), while a sensor node 

measures the received power at different distances from the primary user. The sensor 

node performs a spectrum sensing scan 1,000 times at each point and averages the 

received energy 
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where Eav is given by Equation (6). 

The results are shown as the received power plotted against distance in Figure 18. 

The minimum and maximum measured signal powers at each point are also plotted. The 

results indicate that the minimum signal level for distances larger than 10.0 m is under 

the preselected threshold (−58 dBm), which causes a possibility of an erroneous 

detection. To be on the safe side, the maximum distance between primary users, 

secondary user, and sensor nodes was chosen to be less than 10.0 m.  
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Figure 18.  Average signal energy versus distance 

3. Secondary User Design 

The cognitive radio design was based on the conceptual diagram shown in Figure 

10. Essentially, the secondary user should be able to coexist with the primary user in the 

same frequency spectrum without interference; therefore, the secondary user must 

perform spectrum sensing before accessing the channel. 

The cognitive.py routine accomplishes all secondary user functions to meet this 

end. As shown in Figure 19, the routine starts by initializing the USRP before carrying 

out an energy-detection process to look for unoccupied channels. Whenever there is an 

opportunity (i.e., a free channel), the cognitive radio switches into transmission mode. 

The energy detection process uses almost the same flow graph as the sensor node’s 

routine. That is, after averaging the FFT bins and determining the received signal’s 

average energy, the result is compared to a preselected threshold to decide whether the 
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channel is free or busy. If busy, the algorithm sends a tuning request to the next 

frequency, and the process is carried out again by calling the function 

self.g.set_center_freq(uhd.tune_request(target_freq,rf_freq=(target_freq+self.lo 

_offset), rf_freq_policy=uhd.tune_request.POLICY_MANUAL)). 

This function is responsible for tuning the receiver center frequency to the target 

frequency, which corresponds to the central frequency of the next channel.  

If a free channel is detected, the algorithm switches to transmission mode by 

calling the developed function tb.tx_transmitter(center_freq), which sends a burst 

following the same process as the one used by a primary user. This happens by 

generating packets of pseudo-random data, modulating them, and sending them over the 

air using the USRP. After completing one burst, the secondary user switches back to 

spectrum sensing mode in the next channel to again look for an unoccupied frequency. 

In the first test of the cognitive radio, the same values for tune delay and dwell 

delay as those used for the sensor nodes (0.1 s and 0.05 s, respectively) are used. This test 

showed that a leakage of power from the transmitter side to the receiver side occurs even 

though both sides are physically separated (i.e., using two antennas on two sides, as 

shown in Figure 20) and the two processes, sensing and transmission, are carried out at 

two different frequencies. 

This leakage leads to very high probability of false alarm in the next channel as 

shown in Table 4. In order to avoid this phenomenon, an additional separation in the time 

domain is added. That is, the secondary user introduces a time delay between the 

transmission process and the follow-on sensing process. This solution has a positive 

influence on reducing the probability of false alarm, as shown in Table 4. This time 

domain separation is created by using a larger tuning delay (i.e., 0.2 s) than the one used 

for the sensor nodes. 
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Figure 19.  Cognitive radio flow graph. 

 

 
Figure 20.  Cognitive radio station using two separated transmitter and receiver 

antennas. 
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Table 4.   Probability of false alarm versus tune delay for SU. 
Tune delay in 

seconds Pf at channel 2 Pf at channel 3 

0.1 0.447 0.029 
0.2 0.049 0.035 

 

C. EXPERIMENTAL RESULTS 

1. Testbed 

The cognitive environment testbed for the complete scenario was set up on the 

roof of Spanagel Hall at the Naval Postgraduate School. All network elements were built 

on the software-defined radio design philosophy using GNU Radio and interfaced with 

USRPs to take advantage of the software-defined radio’s features, which are mainly 

flexibility and adaptability. 

The scenario architecture was first introduced in the discussion of simulation in 

[2] in which a large number of sensor nodes, primary users and secondary users are 

deployed in cognitive environment. In this experiment, only four sensors nodes were used 

to form the wireless sensor network. The four sensor nodes, three primary users, and one 

secondary user operated in the same proximity to form the overall scenario, as shown in 

Figure 21. 

 
Figure 21.  Complete testbed with four sensor nodes, three PUs, and one SU. 
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A sensor node is composed of a laptop in which the routine sensor.py runs 

interfaced with the USRP N210 with WBX daughterboard. Each sensor node performs a 

spectrum sensing scan in the band of interest [917–918 MHz]. 

A secondary user deploys the same USRP device (N210 with WBX 

daughterboard) as the sensor node and uses a laptop in which a cognitive.py routine is 

executed as explained in the previous section. 

The primary users are implemented using USRPs B200. Each one is connected to 

a laptop via a USB cable. The primary.py routine is run so that each primary user 

transmits a constant amplitude burst in a fixed channel following the concept introduced 

in the last section. In order to eliminate any possibility of distinguishing between primary 

and secondary users using measured power levels, the same output power for both is used 

(0.1 W), even though in the real world the primary user power is greater than secondary 

user power. A sample of the received energy pattern for a particular channel (channel 3) 

at each of the sensor nodes is shown in Figure 22. The primary user’s traffic can be 

readily observed in the long continuous bursts dispersed over time.  The secondary user 

traffic is reflected in the short pulses. The average received signal strength of the 

secondary user signal by each sensor node was −36.652 dBm, −42.232 dBm, −32.819 

dBm, −28.561, respectively. 

 
Figure 22.  Received energy pattern at each of the sensor nodes in channel 3. 
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All the elements of the network are assigned stationary positions as listed in Table 

5. The positions of all elements (i.e., sensor nodes, primary users, and the secondary user) 

are scaled by a factor of 100 to better illustrate the results obtained. 

Table 5.   Primary, sensor nodes and secondary user coordinates used in 
the testbed of ESRB localization scheme. 

Users X-Coordinates (cm) Y-Coordinates (cm) 
Primary User 1 −800 250 
Primary User 2 800 250 
Primary User 3 800 −250 
Sensor Node 1 0 −200 
Sensor Node 2 200 0 
Sensor Node 3 0 200 
Sensor Node 4 −200 0 
Secondary User −400 250 

 

2. ESRB Localization Scheme Results 

Test execution is run for 20 superframes with the WSN performing 55 scans per 

superframe. The position estimates obtained from the ESRB localization algorithm using 

the experimental data from the sensor nodes are shown in the Figure 23 by the magenta 

crosses. The primary users are the green boxes, while the secondary user is the blue 

circle. The sensor nodes are the red Xs in the center of the plot.  

The distance error of the estimated position of the secondary user is plotted 

against the number of superframes, as shown in Figure 24. The first 18 superframes result 

in diverged position estimates from the algorithm. These position estimates are the 

magenta crosses inside the circular ring formed by the wireless sensor network at the 

center of the environment, as shown in Figure 23. The ESRB algorithm can and will 

diverge when the iterative non-linear least-squares method is unable to determine the 

direction of descent towards the local minimum. This can be due to several factors but is 

primarily due to the algorithm failing to identify the secondary user from among the 

primary user traffic. At superframe 18, a coarse position estimate is identified at ( −2385 

cm, 2385 cm), but this is not close to the secondary user position (an error of 2915 cm). 
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Additionally, a second potential position was discovered later at (−2380 cm, 1440 

cm), which is also incorrect (an error of 1978 cm). These coarse position estimates are 

not accurate but are observed to be concentrated in the vicinity of and converging 

towards the true position of the secondary user. Those errors are most likely because of 

the large amount of spectral scans required in order to obtain an accurate estimate of the 

probability of detection at each sensor node and a lack of timing synchronization among 

sensors. Also, the simulation results in [2] suggest the number of sensor nodes required to 

be on the order of 50 compared to four in this work. 

 
Figure 23.  Experimental model and results using wireless sensor network to 

locate a stationary cognitive radio. 

3. CRSSB Localization Scheme Results 

As an alternative, the collected data was processed by the received-signal-

strength-based localization scheme to determine if it was possible to solve for the 

position of the secondary user. Several assumptions were introduced to facilitate this 
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operation. Specifically, all secondary user traffic was segregated from the primary user 

traffic on the basis of signal strength and transmission pattern (burst length).  

 
Figure 24.  Distance error (cm) versus the number of superframes. 

The secondary user’s original transmission power was assumed to be 0.1 W. 

Under these conditions, the following distance estimates were obtained for each of the 

sensor nodes to form the radii of the circles (sensor 1, 2150.802; sensor 2, 4088.982; 

sensor 3, 1383.463; sensor 4, 847.302). The lack of intersection of all four circles makes 

it difficult to achieve a secondary user’s position estimate using the received signal 

strength localization method alone.  

As a second alternative, the cooperative-received-signal-strength-based (CRSSB) 

localization scheme along with the previously mentioned assumptions was used to 

estimate the secondary user location (under the same conditions as the alternative). The 

CRSSB did provide an acceptable position estimation; its output corresponds to the area 

of intersection of three circles as shown in Figure 25. The circle centered on sensor node 

2 is discarded since it does not intersect with any other circle (the estimated distance 
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(circle radius) is larger than the other estimations). The resulting estimated position of the 

secondary user is ( −480 cm, 290 cm) with an error of 89 cm. 

In this chapter, an in-depth explanation of the adopted testing scenario used to test 

the ESRB and CRSSB localization schemes was provided. Specifically, the testbed and 

the network element design were presented in detail. Each of the network elements 

worked successfully and provided the desired output. Experimental results were 

presented for both ESRB and CRSSB localization schemes; the CRSSB position estimate 

was more accurate than the ESRB estimate. The large error in the ESRB estimate is 

believed to be due to the lack of time synchronization among sensor nodes, the small 

number of sensor nodes, and a small number of spectral scans per superframe as 

compared to those used in [2]. 

 
Figure 25.  Experimental model and results using received signal strength 

localization scheme. 
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V. CONCLUSION 

The focus of this thesis was an implementation of a cognitive environment to 

demonstrate the effectiveness of the ESRB and CRSSB localization schemes under real-

world conditions. To accomplish these objectives, a design for the environment was 

proposed as shown in Figure 7. The cognitive environment is composed of four elements: 

1) primary user, 2) secondary user, 3) sensor node, and 4) decision maker. First, an 

explanation of the approach behind each network element’s conceptual diagram was 

given. Second, the actual implementation of each element using GNU Radio and USRPs 

was presented in detail. The ESRB localization scheme did not provide accurate position 

estimates; however, the CRSSB localization scheme yielded an estimate within an 

acceptable level of tolerance.    

A. SIGNIFICANT CONTRIBUTIONS 

Three main contributions were presented in this thesis. 

To take advantage of software-defined radio features (flexibility and adaptability), 

all network elements were built using GNU Radio interfaced with the USRPs from Ettus 

Research. Three GNU Radio routines were developed to meet the design requirements 

for sensor nodes, primary users and secondary user. Two Ettus products were used to 

achieve this: the USRP N210 with WBX daughterboard for sensor nodes and the 

secondary user and the USRP B200 for primary users. 

The testbed for the cognitive environment was developed and set up as shown in 

Figure 21 on the roof of Spanagel Hall at the Naval Postgraduate School. Each of the 

network elements worked successfully and provided the desired output. The primary 

users generated a signal with fixed amplitude at the preselected channel. All sensor nodes 

were then able to perform energy calculations and detect of the primary user’s signal. 

Finally, the secondary user was able to sense the spectrum and transmit a generated burst 

in the detected vacant slots.  

The scan reports from each sensor node were aggregated at the decision maker in 

which the ESRB and the CRSSB localization algorithms were executed in order to 
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estimate the secondary user location. For the ESRB localization scheme, the results were 

not accurate but were observed to be concentrated in the vicinity of and converging 

towards the true position of the secondary user as shown in Figure 23. The errors are 

believed to be caused by three factors: the limited number of sensor nodes used (four 

sensor nodes) compared to the number used on the simulation presented in [2] (50 sensor 

nodes), the number of scans per superframe (55 scans) being less than the suggested 

number in [2] to obtain accurate estimates (600 scans), and the lack of timing 

synchronization among sensor nodes. The CRSSB localization scheme provided position 

estimation within an acceptable level of tolerance.  

B. FUTURE WORK 

An improvement to the implementation reported in this thesis would be to include 

a synchronization process among sensor nodes. This is possible via several solutions. For 

example, the synchronization may be accomplished using a multiple-input/multiple-

output (MIMO) cable or using an optional global positioning system (GPS) module, 

which allows multiple USRPs spread over a large area to synchronize to the GPS 

standard [26].  

The geographic area of the overall cognitive environment implemented in this 

work was restricted to the roof of a building; however, the actual cognitive network may 

extend to several kilometers [2]. The main cause of this restriction was the limitation on 

the output signal power delivered by the USRPs, which was dictated by the capability of 

the USRP B200 (maximum output signal power is ~ 0.1 W [26]) and the regulations of 

ISM band, which mandates that the maximum signal power allowed is 0.1 W. Using 

another frequency band and adding an external amplifier to the device seems to be a 

reasonable solution to allow the device to reach higher power output so that a wider test 

area is possible. 

In this thesis, the secondary user was assigned a static position; however, a real-

world scenario seldom presents such behavior. A more realistic test scenario can be 

accomplished by using a moving secondary user with random movement at various 

speeds over time. 
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The simulation results presented in [1] and [2] showed that using a large number 

of sensor nodes gives more accurate position estimates. In the testbed scenario in this 

work, the number of sensor nodes was limited to four. The main cause of this restriction 

was a limited number of the USRPs available for testing. Using additional sensor nodes 

may provide more accurate results than these experimental results. 
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APPENDIX 

This appendix includes the GNU Radio code for implementing the primary, the 

sensor node, and the secondary. The code for Transmit path class is also listed. 

A. PRIMARY 

The banchmarck_tx.py script from the GNU Radio example library is modified to 

obtain the  primary.py python routine, and satisfy the design requirements. 

#!/usr/bin/env python 

from gnuradio import digital 

from gnuradio import gr, uhd 

from gnuradio import filter 

from gnuradio import analog 

from gnuradio import blocks 

from gnuradio.eng_notation import num_to_str, str_to_num 

from gnuradio.eng_option import eng_option 

from optparse import OptionParser 

import math 

import sys 

import time, struct 

from transmit_path import transmit_path 

import random  

from datetime import datetime 

class tx_transmitter(gr.top_block): 

    def __init__(self,modulator, options): 

        gr.top_block.__init__(self) 

 # ----------------------------------------------------------------- # 

args = modulator.extract_kwargs_from_options(options) 

        #symbol_rate = options.bitrate / modulator(**args).bits_per_symbol() 

 self.txpath = transmit_path(modulator, options) 

        # ---------------------------------------------------------------- 
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        # Set up USRP to transmit on  daughterboard 

 

        d = uhd.find_devices(uhd.device_addr(options.args)) 

        uhd_type = d[0].get('type') 

 # blocks connection    

        stream_args = uhd.stream_args('fc32', channels=range(1)) 

        self.u = uhd.usrp_sink(device_addr=options.args, stream_args=stream_args) 

        # Set up USRP system based on type 

        if(uhd_type == "usrp"): 

         self.u.set_subdev_spec("A:0") 

        # Use the tune requests to tune each channel  

 #k=random.randint(0,2)     

 tr=options.freq 

 print "starting frequency %d" % tr 

    r = self.u.set_center_freq(tr) 

        dev_freq=self.u.get_center_freq() 

 print "actual frequency %d " % dev_freq 

              self.usrp_rate  = options.samp_rate 

 print "target sampling rate %d" % options.samp_rate 

        self.u.set_samp_rate(self.usrp_rate) 

        dev_rate = self.u.get_samp_rate() 

 print "actual sampling rate %d" % dev_rate 

        # --------------------------------------------------------------- 

        if options.gain is None: 

            # if no gain was specified, use the mid-point in dB 

            g = self.u.get_gain_range() 

            options.gain = float(g.start()+g.stop())/2.0 

     print "no gain mentioned, mid point is used " % options.gain 

        else: 

  self.u.set_gain(options.gain) 

  print "target gain %d" % options.gain 

  dev_gain=self.u.get_gain() 
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  print "actual gain %d" % dev_gain         

 

        # Set the subdevice spec 

        if(options.spec): 

            self.u.set_subdev_spec(options.spec) 

        # Set the antenna 

        if(options.antenna): 

            self.u.set_antenna(options.antenna) 

        self.connect(self.txpath, self.u) 

##------------------------------------------------------------ 

def main(): 

 mods = digital.modulation_utils.type_1_mods() 

 

 parser=OptionParser(option_class=eng_option, 
conflict_handler="resolve") 

 expert_grp = parser.add_option_group("Expert") 

 transmit_path.add_options(parser, expert_grp) 

 parser.add_option("-f", "--freq", type="eng_float", default=913000000, 

                    help="set frequency to FREQ", metavar="FREQ") 

 parser.add_option("-a", "--args", type="string", default="", 

                    help="UHD device address args [default=%default]") 

 parser.add_option("", "--spec", type="string", default=None, 

             help="Subdevice of UHD device where appropriate") 

 parser.add_option("-A", "--antenna", type="string", default= None, 

                    help="select Tx Antenna where appropriate") 

 parser.add_option("-S", "--samp-rate", type="eng_float", default=200e3, 

                    help="set sample rate [default=%default]") 

 parser.add_option("-g", "--gain", type="eng_float", default=15, 

                    help="set gain in dB (default is midpoint)") 

 parser.add_option("-m", "--modulation", type="choice", 
choices=mods.keys(), 

                      default='psk', 
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                      help="Select modulation from: %s [default=%%default]" 

                            % (', '.join(mods.keys()),)) 

 parser.add_option("-s", "--size", type="eng_float", default=4000, 

                help="set packet size [default=%default]") 

 parser.add_option("-M", "--megabytes", type="eng_float", default=1.0, 

                help="set megabytes to transmit [default=%default]") 

 parser.add_option("","--discontinuous",action="store_true", default=False, 

                help="enable discontinous transmission (bursts of 5 
packets)") 

  

 (options, args) = parser.parse_args ()  

        #print options 

 def send_pkt(payload='', eof=False): 

         return tb.txpath.send_pkt(payload, eof)    

        #print "mods[options.modulation]", mods[options.modulation] 

     # build the graph 

     tb = tx_transmitter(mods[options.modulation], options) 

    tb.start() # start flow graph 

 # Open a file 

 fo = open("log.txt", "a") 

 fo.write("primary user log file \n"); 

    # generate and send packets 

     nbytes = int(1e6 * options.megabytes) 

 n = 0 

 pktno = 0 

 pkt_size = int(options.size) 

 #### delay time to start in order to synchronise all usrp's to the same starting 
point 

 vdate=time.time() 

 print "vdate", vdate 

 bdate=datetime(2014, 7, 7, 15, 21, 10) 

 t= time.mktime(bdate.timetuple()) 
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 print "bdate", t 

   

 while t>vdate: 

  time.sleep(1) 

  print "waiting"  

  vdate=time.time() 

 while 1: 

  fo = open("log.txt", "a") 

  k=random.randint(0,3)  

  data = (pkt_size - 2) * chr(pktno & 0xff)  

  payload = struct.pack('!H', pktno & 0xffff) + data 

  send_pkt(payload, eof=False) 

  n += len(payload) 

  fo.write( "packet transmition\n"); 

  sys.stderr.write('.') 

  if options.discontinuous and pktno % 10 == 9: # number of packets 
in one burst 

              k=random.randint(0,3)  

                        vdate=datetime.now().strftime('%H:%M:%S.%f \n') 

   fo.write(vdate); 

   time.sleep(1+k*1) 

   print "sleep" 

  pktno += 1 

  fo.close() 

 send_pkt(eof=True) 

if __name__ == '__main__': 

    try: 

        main() 

    except KeyboardInterrupt: 

        pass 
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A. SENSOR NODE 

 
The sensor.py is based on an available python script in the GNU Radio library 

entitled usrp_spectrum_sensing.py.  

#!/usr/bin/env python 

from gnuradio import gr, eng_notation 

from gnuradio import blocks 

from gnuradio import audio 

from gnuradio import filter 

from gnuradio import fft 

from gnuradio import uhd 

from gnuradio.eng_option import eng_option 

from optparse import OptionParser 

import sys 

import math 

import struct 

import threading 

from datetime import datetime 

import datetime as dt 

import time 

import calendar 

class ThreadClass(threading.Thread): 

    def run(self): 

        return 

class tune(gr.feval_dd): 

    """ 

    This class allows C++ code to callback into python. 

    """ 

    def __init__(self, tb): 

        gr.feval_dd.__init__(self) 

        self.tb = tb 
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   def eval(self, ignore): 

        """ 

        This method is called from blocks.bin_statistics_f when it wants 

        to change the center frequency.  This method tunes the front 

        end to the new center frequency, and returns the new frequency 

        as its result. 

        """ 

        try: 

            # We use this try block so that if something goes wrong 

            # from here down, at least we'll have a prayer of knowing 

            # what went wrong.  Without this, you get a very 

            # mysterious: 

            #   terminate called after throwing an instance of 

            #   'Swig::DirectorMethodException' Aborted 

            # message on stderr.  Not exactly helpful ;) 

           new_freq = self.tb.set_next_freq() 

           # wait until msgq is empty before continuing 

            while(self.tb.msgq.full_p()): 

                #print "msgq full, holding.." 

                time.sleep(0.1) 

                return new_freq 

        except Exception, e: 

            print "tune: Exception: ", e 

class parse_msg(object): 

    def __init__(self, msg): 

        self.center_freq = msg.arg1() 

        self.vlen = int(msg.arg2()) 

        assert(msg.length() == self.vlen * gr.sizeof_float) 

        # FIXME consider using NumPy array 

        t = msg.to_string() 

        self.raw_data = t 

        self.data = struct.unpack('%df' % (self.vlen,), t) 
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class my_top_block(gr.top_block): 

    def __init__(self): 

        gr.top_block.__init__(self) 

        usage = "usage: %prog [options] min_freq max_freq" 

        parser = OptionParser(option_class=eng_option, usage=usage) 

        parser.add_option("-a", "--args", type="string", default="", 

                          help="UHD device device address args [default=%default]") 

        parser.add_option("", "--spec", type="string", default=None, 

                   help="Subdevice of UHD device where appropriate") 

        parser.add_option("-A", "--antenna", type="string", default=None, 

                          help="select Rx Antenna where appropriate") 

        parser.add_option("-s", "--samp-rate", type="eng_float", default=1e6, 

                          help="set sample rate [default=%default]") 

        parser.add_option("-g", "--gain", type="eng_float", default=None, 

                          help="set gain in dB (default is midpoint)") 

        parser.add_option("", "--tune-delay", type="eng_float", 

                          default=0.25, metavar="SECS", 

                          help="time to delay (in seconds) after changing frequency 
[default=%default]") 

        parser.add_option("", "--dwell-delay", type="eng_float", 

                          default=0.25, metavar="SECS", 

                          help="time to dwell (in seconds) at a given frequency 
[default=%default]") 

        parser.add_option("-b", "--channel-bandwidth", type="eng_float", 

                          default=6.25e3, metavar="Hz", 

                          help="channel bandwidth of fft bins in Hz [default=%default]") 

        parser.add_option("-l", "--lo-offset", type="eng_float", 

                          default=0, metavar="Hz", 

                          help="lo_offset in Hz [default=%default]") 

        parser.add_option("-q", "--squelch-threshold", type="eng_float", 

                          default=None, metavar="dB", 

                          help="squelch threshold in dB [default=%default]") 
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        parser.add_option("-F", "--fft-size", type="int", default=None, 

                          help="specify number of FFT bins 
[default=samp_rate/channel_bw]") 

        (options, args) = parser.parse_args() 

 if len(args) != 2: 

            parser.print_help() 

            sys.exit(1) 

        self.channel_bandwidth = options.channel_bandwidth 

        self.min_freq = eng_notation.str_to_num(args[0]) 

        self.max_freq = eng_notation.str_to_num(args[1]) 

        if self.min_freq > self.max_freq: 

           # swap them 

            self.min_freq, self.max_freq = self.max_freq, self.min_freq 

       # build graph 

        self.u = uhd.usrp_source(device_addr=options.args, 

                                 stream_args=uhd.stream_args('fc32')) 

       # Set the subdevice spec 

        if(options.spec): 

            self.u.set_subdev_spec(options.spec, 0) 

        # Set the antenna 

        if(options.antenna): 

            self.u.set_antenna(options.antenna, 0) 

        self.u.set_samp_rate(options.samp_rate) 

        self.usrp_rate = usrp_rate = self.u.get_samp_rate() 

        self.lo_offset = options.lo_offset 

       if options.fft_size is None: 

            self.fft_size = int(self.usrp_rate/self.channel_bandwidth) 

     print self.fft_size 

        else: 

            self.fft_size = options.fft_size # very slow for 128 fft_size 

        self.squelch_threshold = options.squelch_threshold 

        s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) 
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        mywindow = filter.window.blackmanharris(self.fft_size) 

        ffter = fft.fft_vcc(self.fft_size, True, mywindow, True) 

        power = 0 

        for tap in mywindow: 

            power += tap*tap 

        c2mag = blocks.complex_to_mag_squared(self.fft_size) 

        # Set the freq_step to 75% of the actual data throughput. 

        # This allows us to discard the bins on both ends of the spectrum. 

        self.freq_step = self.channel_bandwidth 

       self.min_center_freq = self.min_freq  

        nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) 

        self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) 

        self.next_freq = self.min_center_freq 

        tune_delay  = max(0, int(round(options.tune_delay * usrp_rate / 
self.fft_size)))  # in fft_frames 

 print "tune delay", tune_delay 

        dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / 
self.fft_size))) # in fft_frames 

 print " dwell delay", dwell_delay 

        self.msgq = gr.msg_queue(1) 

        self._tune_callback = tune(self)        # hang on to this to keep it from being 
GC'd 

        stats = blocks.bin_statistics_f(self.fft_size, self.msgq, 

                                        self._tune_callback, tune_delay, 

                                        dwell_delay) 

        # FIXME leave out the log10 until we speed it up 

 #self.connect(self.u, s2v, ffter, c2mag, log, stats) 

 self.connect(self.u, s2v, ffter, c2mag, stats) 

 

        if options.gain is None: 

            # if no gain was specified, use the mid-point in dB 

            g = self.u.get_gain_range() 

            options.gain = float(g.start()+g.stop())/2.0 
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        self.set_gain(options.gain) 

        print "gain =", options.gain 

    def set_next_freq(self): 

        target_freq = self.next_freq 

        self.next_freq = self.next_freq + self.freq_step 

        if self.next_freq >= self.max_center_freq: 

            self.next_freq = self.min_center_freq 

        if not self.set_freq(target_freq): 

            print "Failed to set frequency to", target_freq 

            sys.exit(1) 

        return target_freq 

    def set_freq(self, target_freq): 

        """ 

        Set the center frequency we're interested in. 

        Args: 

            target_freq: frequency in Hz 

        @rypte: bool 

       """ 

        r = self.u.set_center_freq(uhd.tune_request(target_freq, rf_freq=(target_freq 
+ self.lo_offset),rf_freq_policy=uhd.tune_request.POLICY_MANUAL)) 

        if r: 

            return True 

        return False 

    def set_gain(self, gain): 

        self.u.set_gain(gain) 

    def nearest_freq(self, freq, channel_bandwidth): 

        freq = round(freq / channel_bandwidth, 0) * channel_bandwidth 

        return freq 

def main_loop(tb): 

    fo = open("sensor1", "w+") 

    vdate=datetime.now().strftime('%D') 

    #fo.write(vdate); 
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    fo.write("sensor 1 log file for: %s \n\n\n" % vdate) 

    fo.write("0=busy \n"); 

    fo.write("1=free \n"); 

    bin_start =int(tb.fft_size * ((1 - 0.75) / 2)) # remove the edges of the signal 

    print "bin_start", bin_start 

    bin_stop = int(tb.fft_size - bin_start) 

    print "bin_stop", bin_stop 

    iteration=0 

    #### delay time to start in order to synchronise all usrp's to the same starting 
point 

    vdate=time.time() 

    print "vdate", vdate 

    bdate=datetime(2014, 7, 7, 14, 44, 10) 

    t= time.mktime(bdate.timetuple()) 

    print "bdate", t 

    while t>vdate: 

 time.sleep(1) 

 print "waiting"  

 vdate=time.time() 

  ########################################################## 

    while 1: 

    #for j in range (1, 11): 

      iteration +=1 

      fo = open("sensor1", "a+") 

      vdate=datetime.now().strftime('%H:%M:%S.%f \n') 

      fo.write(vdate); 

      #fo.close() 

      print "iteration", iteration, datetime.now() 

      for i in range (1,4): 

 fo = open("sensor1", "a+") 

        # Get the next message sent from the C++ code (blocking call). 

        # It contains the center frequency and the mag squared of the fft 
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        m = parse_msg(tb.msgq.delete_head()) 

        # m.center_freq is the center frequency at the time of capture 

        # m.data are the mag_squared of the fft output 

        # m.raw_data is a string that contains the binary floats. 

        # You could write this as binary to a file. 

 center_freq = m.center_freq 

 power_db=0 

 power=0 

        for i_bin in range(bin_start, bin_stop): 

     power +=m.data[i_bin] 

 #print power         

 power_db += 10*math.log10(1e-6+power/tb.usrp_rate)  

        if (power_db > tb.squelch_threshold): 

                print "center_freq", center_freq, "power_db", power_db, "channel %d" 
%i, "is busy" 

  a=str(power_db) 

  fo.write("chan %d 0 " % int(i)); 

  fo.write(a); 

  fo.write("\n"); 

  fo.close() 

 else: 

  print "center_freq", center_freq, "power_db", power_db, "channel 
%d" %i, "is free"  

  a=str(power_db) 

  fo.write("chan %d 1 " % int(i)); 

                fo.write(a); 

  fo.write("\n"); 

  fo.close() 

if __name__ == '__main__': 

    t = ThreadClass() 

    t.start() 

    tb = my_top_block() 
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    try: 

        tb.start() 

        main_loop(tb) 

    except KeyboardInterrupt: 

       pass 

 

B. SECONDARY USER 

#!/usr/bin/env python 

from gnuradio import digital 

from gnuradio import gr 

from gnuradio import uhd 

from gnuradio import filter 

from gnuradio import analog 

from gnuradio import blocks 

from gnuradio import eng_notation 

from gnuradio.eng_notation import num_to_str 

from gnuradio.eng_notation import str_to_num 

from gnuradio.eng_option import eng_option 

from optparse import OptionParser 

import math 

import sys 

import time 

import struct 

from transmit_path import transmit_path 

from gnuradio import audio 

from gnuradio import fft 

import threading 

from datetime import datetime 

################################################################## 

options={} 

frequency=0 
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mods = digital.modulation_utils.type_1_mods() 

class ThreadClass(threading.Thread): 

    def run(self): 

        return 

class tune(gr.feval_dd): 

    """ 

    This class allows C++ code to callback into python. 

    """ 

    def __init__(self, tb): 

        gr.feval_dd.__init__(self) 

        self.tb = tb 

    def eval(self, ignore): 

        """ 

        This method is called from blocks.bin_statistics_f when it wants 

        to change the center frequency.  This method tunes the front 

        end to the new center frequency, and returns the new frequency 

        as its result. 

        """ 

        try: 

            # We use this try block so that if something goes wrong 

            # from here down, at least we'll have a prayer of knowing 

            # what went wrong.  Without this, you get a very 

            # mysterious: 

            #   terminate called after throwing an instance of 

            #   'Swig::DirectorMethodException' Aborted 

            # message on stderr.  Not exactly helpful ;) 

            new_freq = self.tb.set_next_freq() 

             # wait until msgq is empty before continuing 

            while(self.tb.msgq.full_p()): 

                #print "msgq full, holding.." 

                time.sleep(0.1) 

               return new_freq 
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        except Exception, e: 

            print "tune: Exception: ", e 

class parse_msg(object): 

    def __init__(self, msg): 

        self.center_freq = msg.arg1() 

        self.vlen = int(msg.arg2()) 

        assert(msg.length() == self.vlen * gr.sizeof_float) 

        # FIXME consider using NumPy array 

        t = msg.to_string() 

        self.raw_data = t 

        self.data = struct.unpack('%df' % (self.vlen,), t) 

# sensing and main class  

class my_top_block(gr.top_block): 

        def __init__(self): 

        global options, frequency, mods #modulator 

 gr.top_block.__init__(self) 

         parser = OptionParser(option_class=eng_option, 
conflict_handler="resolve") 

 expert_grp = parser.add_option_group("Expert") 

        transmit_path.add_options(parser, expert_grp) 

 usage = "usage: %prog [options] min_freq max_freq" 

        parser = OptionParser(option_class=eng_option, usage=usage) 

        parser.add_option("-a", "--args", type="string", default="", 

                          help="UHD device device address args [default=%default]") 

        parser.add_option("", "--spec", type="string", default=None, 

                   help="Subdevice of UHD device where appropriate") 

        parser.add_option("-A", "--antenna", type="string", default=None, 

                          help="select Tx/Rx Antenna where appropriate") 

        parser.add_option("-S", "--samp-rate", type="eng_float", default=200e3, 

                          help="set sample rate [default=%default]") 

        parser.add_option("", "--tune-delay", type="eng_float", 

                          default=0.25, metavar="SECS", 
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                          help="time to delay (in seconds) after changing frequency 
[default=%default]") 

        parser.add_option("", "--dwell-delay", type="eng_float", 

                          default=0.25, metavar="SECS", 

                          help="time to dwell (in seconds) at a given frequency 
[default=%default]") 

        parser.add_option("-b", "--channel-bandwidth", type="eng_float", 

                          default=500e3, metavar="Hz", 

                          help="channel bandwidth of fft bins in Hz [default=%default]") 

        parser.add_option("-l", "--lo-offset", type="eng_float", 

                          default=0, metavar="Hz", 

                          help="lo_offset in Hz [default=%default]") 

        parser.add_option("-q", "--squelch-threshold", type="eng_float", 

                          default=None, metavar="dB", 

                          help="squelch threshold in dB [default=%default]") 

        parser.add_option("-F", "--fft-size", type="int", default=None, 

                          help="specify number of FFT bins 
[default=samp_rate/channel_bw]") 

         parser.add_option("-g", "--txgain", type="eng_float", default=15, 

                    help="set gain in dB (default is midpoint)") 

 parser.add_option("-G", "--rxgain", type="eng_float", default=15, 

                    help="set gain in dB (default is midpoint)") 

 parser.add_option("-m","--modulation", type="choice", 
choices=mods.keys(), 

                      default='psk', 

                      help="Select modulation from: %s [default=%%default]" 

                            % (', '.join(mods.keys()),)) 

 parser.add_option("-s", "--size", type="eng_float", default=4000, 

                help="set packet size [default=%default]") 

 parser.add_option("-M", "--megabytes", type="eng_float", default=1.0, 

                help="set megabytes to transmit [default=%default]") 

 (options, args) = parser.parse_args ()  

        if len(args) != 2: 
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            parser.print_help() 

            sys.exit(1) 

# Set up USRP to transmit on  daughterboard 

 d = uhd.find_devices(uhd.device_addr(options.args)) 

        uhd_type = d[0].get('type') 

       # build graph 

 modulator=mods[options.modulation] 

        stream_args = uhd.stream_args('fc32', channels=range(1)) 

        self.u = uhd.usrp_sink(device_addr=options.args, stream_args=stream_args) 

 self.g = 
uhd.usrp_source(device_addr=options.args,stream_args=stream_args) 

        self.txpath = transmit_path(mods[options.modulation], options) 

 ########### transmitter features ######## 

        # Set the antenna 

        if(options.antenna): 

            self.u.set_antenna(options.antenna, 0) 

 # Set the subdevice spec 

        # Set up USRP system based on type 

        if(uhd_type == "usrp"): 

         self.u.set_subdev_spec("A:0") 

 #if(options.spec): 

        #self.u.set_subdev_spec("A:0") 

 

        # Set the antenna 

        if(options.antenna): 

            self.u.set_antenna(options.antenna, 0) 

 ###### sampling rate  

 self.u.set_samp_rate(options.samp_rate) 

 # set gain: 

 self.u.set_gain(options.txgain) 

 print "target gain %d" % options.txgain 

  #dev_gain=self.u.get_gain() 
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  #print "actual gain %d" % dev_gain  

 # Set up USRP system based on type 

        self.channel_bandwidth = options.channel_bandwidth 

        self.min_freq = eng_notation.str_to_num(args[0]) 

        self.max_freq = eng_notation.str_to_num(args[1]) 

        if self.min_freq > self.max_freq: 

            # swap them 

            self.min_freq, self.max_freq = self.max_freq, self.min_freq 

        # Set the subdevice spec 

        #if(options.spec): 

        #self.g.set_subdev_spec("A:0") 

 #self.g.subdev.set_auto_tr(True) 

# Set the antenna 

        if(options.antenna): 

        self.g.set_antenna(options.antenna, 0)   

        self.g.set_samp_rate(options.samp_rate) 

        self.usrp_rate = usrp_rate = self.g.get_samp_rate() 

        self.lo_offset = options.lo_offset 

        if options.fft_size is None: 

            self.fft_size = int(self.usrp_rate/self.channel_bandwidth) 

     print self.fft_size 

        else: 

            self.fft_size = options.fft_size # very slow for 128 fft_size 

           self.squelch_threshold = options.squelch_threshold 

        s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) 

        mywindow = filter.window.blackmanharris(self.fft_size) 

        ffter = fft.fft_vcc(self.fft_size, True, mywindow, True) 

        power = 0 

        for tap in mywindow: 

         power += tap*tap 

        c2mag = blocks.complex_to_mag_squared(self.fft_size) 

        # Set the freq_step to 75% of the actual data throughput. 

 77 



        # This allows us to discard the bins on both ends of the spectrum. 

        self.freq_step = self.channel_bandwidth     

 self.min_center_freq = self.min_freq  

        nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) 

        self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) 

        self.next_freq = self.min_center_freq 

        tune_delay  = max(0, int(round(options.tune_delay * usrp_rate / 
self.fft_size)))  # in fft_frames 

 print "tune delay", tune_delay 

        dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / 
self.fft_size))) # in fft_frames 

 print " dwell delay", dwell_delay 

        self.msgq = gr.msg_queue(1) 

        self._tune_callback = tune(self)        # hang on to this to keep it from being 
GC'd 

        stats = blocks.bin_statistics_f(self.fft_size, self.msgq, 

                                        self._tune_callback, tune_delay, 

                                        dwell_delay) 

         #self.connect(self.u, s2v, ffter, c2mag, log, stats) 

  

  

  

 #### Rx gain 

 self.g.set_gain(options.rxgain) 

 print "target gain %d" % options.rxgain 

 ### connection 

 #self.txpath = transmit_path(mods[options.modulation], options) 

 self.connect(self.g, s2v, ffter, c2mag, stats) 

        self.connect(self.txpath, self.u) 

 ##### transmitter    

    def tx_transmitter(self, frequency): 

 def send_pkt(payload='', eof=False): 

         return self.txpath.send_pkt(payload, eof) 
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     def tx_set_freq(frequency): 

  stream_args = uhd.stream_args('fc32', channels=range(1)) 

  l= uhd.usrp_sink("", stream_args=stream_args) 

  r = l.set_center_freq(uhd.tune_request(frequency, 
rf_freq=(frequency),rf_freq_policy=uhd.tune_request.POLICY_MANUAL)) 

  #l.set_center_freq(frequency) 

  print "transmiting on %d frequency " %frequency 

 nbytes = int(1e6) #* options.megabytes) 

 n = 0 

 pktno = 0 

 pkt_size = int(options.size) 

 tx_set_freq(frequency) 

 while 1: 

  data = (pkt_size - 2) * chr(pktno & 0xff)  

  payload = struct.pack('!H', pktno & 0xffff) + data 

  send_pkt(payload, eof=False) 

  #tr.send_pkt(payload, eof=False) 

  n += len(payload) 

  if pktno % 5 == 4:  

   break 

  pktno += 1 

     #tr.txpath.send_pkt(eof=True) 

 #send_pkt(eof=True 

    def set_next_freq(self): 

        target_freq = self.next_freq 

        self.next_freq = self.next_freq + self.freq_step 

        if self.next_freq >= self.max_center_freq: 

            self.next_freq = self.min_center_freq 

        if not self.set_freq(target_freq): 

            print "Failed to set frequency to", target_freq 

            sys.exit(1) 

        return target_freq 
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    def set_freq(self, target_freq): 

        """ 

        Set the center frequency we're interested in. 

        Args: 

            target_freq: frequency in Hz 

        @rypte: bool 

        """ 

        r = self.g.set_center_freq(uhd.tune_request(target_freq, rf_freq=(target_freq 
+ self.lo_offset),rf_freq_policy=uhd.tune_request.POLICY_MANUAL)) 

        if r: 

            return True 

        return False 

    def main_loop(tb): 

    global options 

    bin_start =250 #int(tb.fft_size * ((1 - 0.75) / 2)) in order to elliminate DC 
component 

    bin_stop = int(tb.fft_size - bin_start) 

    iteration=0 

 #### delay time to start in order to synchronise all usrp's to the same starting 
point 

    vdate=time.time()     

    print "vdate", vdate 

    bdate=datetime(2014, 7, 7, 15, 25, 10) 

    t= time.mktime(bdate.timetuple()) 

    print "bdate", t 

    while t>vdate: 

 time.sleep(5) 

 print "waiting"  

 vdate=time.time()    

      while 1: 

      iteration +=1 

      print "iteration", iteration, datetime.now(),"\n"  

      for i in range (1,4): 
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        # Get the next message sent from the C++ code (blocking call). 

        # It contains the center frequency and the mag squared of the fft 

        m = parse_msg(tb.msgq.delete_head()) 

        # m.center_freq is the center frequency at the time of capture 

        # m.data are the mag_squared of the fft output 

        # m.raw_data is a string that contains the binary floats. 

        # You could write this as binary to a file. 

 center_freq = m.center_freq 

 power_db=0 

 power=0 

        for i_bin in range(bin_start, bin_stop): 

     power +=m.data[i_bin] 

        power_db += 10*math.log10(1e-6+power/tb.usrp_rate)  

        if (power_db > tb.squelch_threshold): 

                print "center_freq", center_freq, "power_db", power_db, "channel %d" 
%i, "is busy" 

 else: 

  print "center_freq", center_freq, "power_db", power_db, "channel 
%d" %i, "is free" 

  tb.tx_transmitter(center_freq) 

  time.sleep(1) 

if __name__ == '__main__': 

    t = ThreadClass() 

    t.start() 

    tb = my_top_block() 

    try: 

        tb.start() 

        main_loop(tb) 

    except KeyboardInterrupt: 

        pass 
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C. TRANSMIT PATH 

from gnuradio import gr 

from gnuradio import eng_notation 

from gnuradio import blocks 

from gnuradio import digital 

import copy 

import sys 

class transmit_path(gr.hier_block2): 

    #print "transmit_path class" 

    def __init__(self, modulator_class, options): 

        ''' 

        See below for what options should hold 

        ''' 

 gr.hier_block2.__init__(self, "transmit_path", 

    gr.io_signature(0,0,0), 

gr.io_signature(1,1,gr.sizeof_gr_complex))  

self._tx_amplitude = .25 #options.tx_amplitude   # digital amplitude 
sent to USRP 

        self._modulator_class = modulator_class     # the modulator_class 
we are using 

        # Get mod_kwargs 

        
mod_kwargs=self._modulator_class.extract_kwargs_from_options(options) 

        # transmitter 

 self.modulator = self._modulator_class(**mod_kwargs) 

      self.packet_transmitter = \ 

            digital.mod_pkts(self.modulator, 

                             access_code=None, 

                             msgq_limit=100, 

                             pad_for_usrp=True) 

        self.amp = blocks.multiply_const_cc(1) 

        self.set_tx_amplitude(self._tx_amplitude) 
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        # Display some information about the setup 

        #if self._verbose: 

            #self._print_verbage() 

        # Connect components in the flowgraph 

        self.connect(self.packet_transmitter, self.amp, self) 

    def set_tx_amplitude(self, ampl): 

 #print "transmit path set tx amplitude" 

        """ 

        Sets the transmit amplitude sent to the USRP in volts     

        Args: 

            : ampl 0 <= ampl < 1. 

        """ 

        self._tx_amplitude = max(0.0, min(ampl, 1)) 

 print self._tx_amplitude 

        self.amp.set_k(self._tx_amplitude) 

         

    def send_pkt(self, payload='', eof=False): 

 #print "transmit_path send_pkt" 

        """ 

        Calls the transmitter method to send a packet 

        """ 

        return self.packet_transmitter.send_pkt(payload, eof)   

    def samples_per_symbol(self): 

        return self.modulator._samples_per_symbol 

    def differential(self): 

        return self.modulator._differential 

    def add_options(normal, expert): 

        """ 

        Adds transmitter-specific options to the Options Parser 

        """ 

        if not normal.has_option('--bitrate'): 

            normal.add_option("-r", "--bitrate", type="eng_float", 
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                              default=100e3, 

                              help="specify bitrate [default=%default].") 

        expert.add_option("-S", "--samples-per-symbol", type="float", 

                          default=2, 

                          help="set samples/symbol [default=%default]") 

        expert.add_option("", "--log", action="store_true", 

                          default=False, 

                          help="Log all parts of flow graph to file (CAUTION: 
lots of data)") 

    # Make a static method to call before instantiation 

    add_options = staticmethod(add_options) 
 

 84 



LIST OF REFERENCES 

[1]  A. Adams, M. Tummala, J. McEachen and J. Scrofani, “Source localization and 
tracking in a cognitive radio environment consisting of frequency and spatial 
mobility,” in Proc. 7th Int. Conf. on Signal Process. Commun. Syst., Carrara, 
VIC, pp. 1–6, 2013. 

[2]  A. Adams, “Source localization in a cognitive radio environment consisting of 
frequency and spatial mobility,” Master’s thesis, Naval Postgraduate School,  
Monterey, CA, 2012. 

[3]  T. Yucek and H. Arsan. “A survey of spectrum sensing algorithms for cognitive 
radio applications,” IEEE Communications Survey & Tutorials, vol. 11, no. 1, 
pp. 116–130, 2009.  

[4]  R.A. Rashid, M.A. Sarijari, N. Fisal, S.K.S. Yusof and N.H. Mahalin, 
“Spectrum sensing measurement using GNU Radio and USRP software radio 
platform,” in Proc. 7th Int. Conf. Wireless and Mobile Commun., Luxembourg, 
2011.  

[5]  R.A. Rashid, M.A. Sarijari, N. Fisal, S.K.S. Yusof and S.H.S. Ariffin, “Enabling 
dynamic spectrum access for cognitve radio using software defined radio 
platform,” in Proc.of Wireless Technol. Applicat., Langkawi, pp.180–185, 2011. 

[6]  C. Carlos, K. Challapali, D. Birru and S. Shankar,. “IEEE 802.22: An 
introduction to the first wireless standard based on cognitive radio,” J. 
Commun., vol. 1, no. 1, pp. 39‒47, 2006. 

[7]  A. He, K.K. Bae, T.R. Newman and J. Gaeddert, “A survey of artificial 
intelligence for cognitive radios,” IEEE Trans. on Veh. Technol., vol. 59, no. 4, 
pp. 1578–1592, 2010.  

[8]  H. Simon, “Cognitive radio: Brain-empowered wireless communications,” IEEE 
J. Selected Areas in Commun., vol. 23, no. 2, pp. 201‒220, 2005.  

[9] H. Celebi and H. Arslan, “Cognitive positioning systems,” IEEE Trans. on 
Wireless Commun., vol. 6, no. 12, pp. 4475–4483, 2007. 

[10] V. Sönmezer, “Cooperative wideband spectrum sensing and localization using 
radio frequency sensor networks,” Master’s thesis, Naval Postgraduate School, 
Monterey, CA, 2009. 

 85 



[11] “Draft standard for wireless regional area network part 22: Cognitive wireless 
RAN medium access control (MAC) and physical layer (PHY) specification: 
Policies and procedures for operation in the TV bands,” IEEE, 2008. 

[12]  K.G. Shin, K. Hyooil, A.W. Min and A. Kumar, “Cognitive radio for dynamic 
spectrum access: From concept to reality,” IEEE Wireless Commun., vol. 17, no. 
6, pp. 64–74, 2010.  

[13]  J. H. Reed. Software Radio: A Modern Approach to Radio Engineering. Upper 
Saddle River, NJ: Prentice Hall Professional, 2002.  

[14]  A. Jain, V. Sharma and B. Amrutur, “Soft real time implementation of a 
cognitve radio testbed for frequency hopping primary satisfying QoS 
Requirements,” in Proc. 20th Nat. Conf. Commun., Kanpur, 2014.  

[15]  E.R. Lavudiya, K.D. Kulat and J.D. Kene, “Implementation and analysis of 
cognitive radio system using Matlab,” Int. J. Comput. Sci. Telecommun., vol. 4, 
no. 7, pp. 23‒28, 2013. 

[16]  D. Cabric, S.M. Mishra and R.W. Brodersen, “Implementation issues in 
spectrum sensing for cognitive radios,” in Conf. Record 38th Asilomar Conf. 
Signals, Syst. Comput., vol. 1, pp. 772‒776, 2004.  

[17]  “Notice of proposed rule making and order: Facilitating opportunities for 
flexible, efficient, and reliable spectrum use employing cognitive radio 
technologies,” FCC, 2005. 

[18]  G. Nautiyal and R. Kumar, “Spectrum sensing in cognitve radio using 
MATLAB,” Int. J. Eng. Adv. Technol., vol. 2, no. 5, 2013.  

[19]  P.S. Aparna and M. Jayasheela, “Cyclostationary feature detection in cognitive 
radio using different modulation schemes,” Int. J. Comput. Applicat., vol. 47, 
no. 21, 2012.  

[20]  M.A. Sarijari, A. Marwanto, N. Fisal, S.K.S. Yusof and R.A Rashid, “Energy 
detection sensing based on GNU Radio and USRP: An analysis study,” in Proc. 
Malaysia Int. Conf. Commun. (MICC), Kuala Lumpur, 2009.  

[21]  K. Letaief and W. Zhang, “Cooperative communications for cognitive radio 
networks,” in Proc. of IEEE, vol. 97, no. 5, pp. 878‒893, 2009.  

[22]  G. Gnesan and Y. Li, “Cooperative spectrum sensing cognitive radio networks,” 
in Proc. IEEE Int. Conf. .Commun., Beijing, 2008.  

 86 



[23]  Z. Wang, Z. Feng, J. Song, Y. Hu and P. Zhang, “A practical semi range-based 
localizationa for cognitive radio,” in Proc. IEEE 71st Veh.Technol. Conf., 
Taipei, 2010.  

[24]  M. Zhioyao, W. Chen, K.B. Letaief and Z. Cao., “A semi range-based iterative 
localization algorithm for cognitive radio networks,” in Proc. IEEE Trans. Veh. 
Technol., vol. 59, no. 2, pp. 704‒717, 2010.  

[25]  I. Guvenc and C. C. Chong, “A survey on TOA based wireless localization and 
NLOS mitigation techniques,” in IEEE Communication Survey & Tutorials, vol. 
11, no. 3, pp. 107–124, 2009.  

[26]  Y. Wang, X. Wang, D. Wang and D.P. Agrawal, “Range-free localization using 
expected hop progress in wireless sensor networks,” in IEEE Trans. Parallel 
and Dist. Syst., vol. 20, no. 10, pp. 1540–1552, 2009.  

[27]  H. Celebi and H. Arslan, “Cognitive positioning systems,” in IEEE Trans. 
Wireless Commun., vol. 6, no. 12, pp. 4475–4483, 2007.  

[28]  Ettus Research, Product description: USRP N200/N210 Networked series and 
USRP B200/B210 Bus series. [Online]. Accessed July 2014. 
Available:https://www.ettus.com/product/details 

[29]  GNU Radio, “GNU Radio: The free and open radio system” (definition and 
installation). [Online]. Accessed July 2014. 
Available:http://gnuradio.org/redmine/projects/gnuradio/wiki 

[30]  A. Aftab and M. N. Mufti, “Spectrum sensing through implementation of 
USRP2,” Master’s thesis, Blekinge Institute of Technology, Sweden, 2010. 

[31]  Python Software Foundation, VA. “Python 3.4.1 documentation.” [Online]. Last 
updated Sep. 11, 2014. Accessed July 2014. Available: 
https://docs.python.org/3/ 

[32]  A. Crohas, “Practical implementation of a cognitive radio system for dynamic 
spectrum access,” Master’s thesis, University of Notre Dame, Indiana, 2008. 

[33]  A.A. Tabassam, M.U. Suleman, S. Kalsait and S. Khan, “Building cognitve 
radio in MATLAB Simulink-A Step towards future wireless technologgy,” 
Wireless Advanced (WiAd), pp. 15–20, London, 2011.  

  

 87 



 THIS PAGE INTENTIONALLY LEFT BLANK  

 88 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
 

 89 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. Thesis objective
	B. Related work
	C. Thesis outline

	II. Background
	A. Cognitive Radio
	1. Cognitive Cycle
	2. Spectrum Sensing
	a. Energy Detection-Based Method
	b. Cyclostationary-Based Method
	c. Matched Filter-Based Method

	3. Cooperative Spectrum Sensing
	4. Application of Cognitive Radio: IEEE 802.22 Standard
	a. Wireless Regional Area Network Deployment Scenario and Cognitive Radio Architecture
	b. Spectrum Sensing in the IEEE 802.22 Standard


	B. Software defined radio
	1. Software Defined Radio (SDR)
	2. Software Defined Radio Model
	3. Benefits

	C. Localization using wireless radio frequency sensors network
	1. Semi-Range-Based Localization Scheme
	2. Extended Semi-Range-Based Localization Scheme
	a. Spectrum Sensing
	b. Spectral Environment Mapping
	c. Localization
	d. Position Refinement

	3. Cooperative-Received-Signal-Strength-Based Localization Schemes


	III. Cognitive radio environment conceptual design
	A. Proposed scheme
	B. Scenario design
	1. Wireless Sensor Network
	2. Primary User Network
	3. Secondary User
	a. Spectrum Sensing
	b. Decision Making
	c. Data Transmission


	C. Decision maker
	1. Case 1: Extended Semi-Range-Based Localization Scheme
	2. Case 2: Cooperative-Received-Signal-Strength-Based Scheme


	IV. Implementation model and results
	A. Experimental Platform
	1. USRP
	2. GNU Radio

	B. Testbed implementation
	1. Primary User
	2. Sensor Node
	a. USRP Initialization
	b. Data Flow
	c. Noise Level Estimation and Threshold Selection
	d. Cognitive Environment

	3. Secondary User Design

	C. experimental results
	1. Testbed
	2. ESRB Localization Scheme Results
	3. CRSSB Localization Scheme Results


	V. Conclusion
	A. Significant contributionS
	B. Future work

	appendix
	A. Primary
	a.  Sensor node
	b. Secondary user
	c. Transmit path

	List of References
	initial distribution list

